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PREFACE

As an undergraduate of Physics, I often wondered how the profes-

sional engineers were actually using computers to solve all of those

intimidating equations. Therefore, it was very satisfying for me to

come to AFIT and to have the opportunity to study numerical analysis

and computer systems. This thesis gave me a chance to apply that know-

ledge to an important problem and to make a contribution that might

improve the capabilities of the Space Shuttle. This project also

taught me some new things about matrix theory, and it was my first

chance to work extensively with a main-frame scientific computer. It

wasn't easy, but I am grateful for the experience.

Thanks are due to Captain James Hodge for his frequent assistance

concerning the use of the HEATEST Program in particular and the CYBER

computer in general. Captain David Audley was most helpful concerning

the mathematical operations of the HEATEST Program. Of course, the

overall guidance and patience of Dr. Dennis Quinn has been invaluable

to the successful completion of this thesis.

Finally, I would like to apologize to my wife, Inokfor my

frequent absence during her first 18 months of residence in the United

States.
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ABSTRACT

A computer program named HEATEST required excessive computer time

to evaluate the matrix Riccati equation for temperature covariance.

Alternative numerical methods were employed to compute the Riccati

equation, and the HEATEST program execution time was reduced by 70%.

However, cumulative temperature covariance rose from 2.45 to 3.28 degrees.

This rise was considered insignificant.

A survey was conducted of methods for computing the matrix exponen-

- tial. A triangular matrix decomposition method proved to be more efficient

than summing the Taylor series, especially for matrices with a large

condition number. This substitution produced an overall 10% decrease

in HEATEST execution time with comparable accuracy.'
'Simpson's Rule was used to evaluate the matrix Riccati integral

term. The accuracy of this method was in the range of 5 to 9 significant

digits, and computation time for the integral term was reduced by 90%

for a matrix of order 13. This substitution prompted the rise in the

" * covariance.

FORTRAN program modules and numerical examples are included.

* IN,



I. INTRODUCTION

PROBEM DESCRIPTION

This thesis attempts to solve one aspect of the problem of deter-

mining allowable limits for the reentry trajectory envelope of the Space

Transportation System (STS or Space Shuttle). The Air Force Flight Test

Center developed a strategy to determine this reentry envelope quantita-

tively. The strategy depended on the use of a computer program named

HEATEST to analyze temperature data recorded during Shuttle reentry and

to compute the values of certain aerothermodynamic parameters by means

of an iterative estimation technique.

The HEATEST program was used successfully to process thermal data

from wind tunnels, the Shuttle simulator, and a reentry maneuver during

the first Shuttle test flight. The major drawback was that the program

required large amounts of expensive computer processor time. According

t- l.odge, 1982, the Air Force Flight Test Center expended a substantial

portion of a $50,000 budget on computer time to operate the HEATEST pro-

* .gram during the first year after its development.

Computer experts at Edwards AFB used a software profiling tool

to determine that most of the processing time was absorbed in performing

matrix multiplications while evaluating this matrix Riccati equation:

n P(tn.Ie +e L e Q~ttA
t

tn-i

1'1
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where

A - a tridiagonal system matrix

AT = the transpose of the A matrix

At = tn - t = time increment of heat propagation

=a dummy time variable

Q -a system error matrix

P(tn) - a priori value of propagated temperaturen covariance at time t

P(t _) n
n-i - a posteriori value of covariance at time

tn-1

The required computation time increased rapidly as a function of

the size of the matrices. For practical time limits, the size of the

system matrix A was limited to order 13 (representing 13 temperature

nodes), which effectively modelled only the outer inch of the Shuttle

thermal protective system (TPS). Subsequent Shuttle missions will per-

form test maneuvers at a later time in the reentry flight profile when

heat will have penetrated deeper into the TPS, so it would be desirable

to process more nodes (and larger matrices) to adequately model the

true Shuttle heat parameters. This problem has a particular urgency at

the time of this thesis, because planned Shuttle landings at Vandenburg

AFB will require trajectories with increased heat stress.

OBJECTIVES

The main objective of this project was to investigate methods

for improving the performance of the HEATEST program. Specifically,

the project had the following goals:

A. To make a baseline performance measurement of the numerical

method originally used to calculate the exponential matrix eAt.

2



The required processor time was to be measured as a function of the

order of matrix A.

B. To make a literature search of other methods for computing

the exponential matrix.

C. To implement alternative numerical methods on the AFIT

CYBER computer in the Fortran 5 language, and to assess their relative

performance.

D. Hopefully, to discover an improved computation method, and

to incorporate that technique into the HEATEST program.

E. To measure the extent of any improvement in overall HEATEST

program execution time which is produced by improved computation of the

matrix exponential.

F. To use standard software engineering practices when modifying

the HEATEST program. These are to include modular design, top-down

organization, and comprehensive documentation including source references.

The original goals were refined and extended as the research

progressed. The literature search resulted in one very promising approach

to the computation of the matrix exponential. The investigation of less

• favorable alternatives was sacrificed in order to devote full effort

I toward implementing a triangular matrix decomposition technique. This

technique then prompted an idea for efficiently approximating the integral

term of the Riccati equation by means of Simpson's rule. These numerical

*4  methods were ultimately incorporated into the HEATEST program with great

success at reducing overall program execution time.

3
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INITIAL RESEARCH STRATEGY

One possible solution might be to obtain an array processor, a

computer logic unit whose architecture is optimized toward the efficient

handling of matrix computations. This would not be very convenient and,

more importantly, the rapid increase of processing time in response to

matrix size suggests that more efficient numerical methods would be a

better solution.

Equation (1) is seen to consist of two terms, each of which is

computed in the HEATEST program by summing a separate Taylor series

expansion. Furthermore, these series must be recomputed over many

subintervals of time in order to guarantee mathematical stability and

accuracy. The time consuming matrix multiplication was necessary for

both Taylor series program modules, which are named MEXP and INTEG,

respectively. This author chose to investigate alternative methods for

atcomputing the matrix exponential e in an attempt to produce a better

MEXP routine.

The following methods were intially proposed, to be supplemented

later by methods from a literature search:

A. Summing a smaller of terms in the Taylor series.

B. Taking advantage of the assumed symmetric nature of the A

matrix in order to convert it to a similar diagonal form.

C. Developing a specialized matrix multiplication algorithm which

4 .is optimized toward tridiagonal matrices in order to reduce the required

number of arithmetic operations.

D. Converting the A matrix to a similar triangular form, and

developing a multiplication algorithm which is optimized toward that

form.
4



These possibilities will be examined in the next two chapters of

this thesis. The information in this chapter was drawn from Hodge,

Phillips, and Audley, 1981 and from Hodge, 1982.

5
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II. SURVEY OF COMPUTATION METHODS FOR THE MATRIX EXPONENTIAL

INTRODUCTION

7. Computation of the matrix exponential eAt is an important general

mathematical problem with wide application to several types of physical

processes. Many mathematical models involve systems of linear, constant

coefficient ordinary differential equations of the form

x'(t) =Ax(t)

where A is a coefficient matrix

x(t) is a solution vector

x(O) = x0 is the initial condition vector

x' represents the first derivative of x

The solution to this equation is given by

VI' At
x(t) = e xO.

This review of computation techniques effectively begins and ends

with the comprehensive survey by Moler and Van Loan, 1978. That survey

evaluated 19 different practical methods for computing the matrix exponen-

tial. The methods were grouped into five general classes and their rela-

tive advantages were assessed. The methods in the survey are oriented

toward the solution of matrices A whose order n is less than a few

hundred, so the constituent elements can be readily stored in the primary

memory of contemporary computers.

Other literature sources were examined from the references quoted

by Moler and Van Loan, 1978, from cross references, and from articles

listed in the Government Records Annual Index (GRAI). However, many of

these other papers specifically referred to the larger survey (see, for

6
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instance: Van Loan, 1977:981 and Ward, 1977:610) or else were directly

referenced by Moler and Van Loan, 1978. No other article was found

which contained either a comparison of methods or which had a comparable

discussion of practical computer implementation considerations.

The remainder of this section will essentially consist of selected

extracts from Moler and Van Loan, 1978. Unless otherwise indicated, every

passage in quotation marks is from this source. The most interesting

methods will be presented and critiqued as to their usefullness in

solving the problem at hand.

SERIES METHODS

An algorithm can be immediately developed from the Taylor series

expansion

eA = I + A + P 2 '9! + ... (2)

One straightforward approach would be to sum the series by adding terms

until the limit of machine precision is exceeded. Unfortunately, this

naive approach has a serious flaw which makes it useful only for setting

a lower bound on the efficiency of calculations.

The matrix exponential has a property which every algorithm must

overcome. As t increases the elements of eAt may grow before they decay.

This is true to some extent for any nonsymmetric matrix. This results

in a hump which is displayed in Figure 2. An example will show why this

is a problem. "Take the input

A = [49 24 = 1 3 -i 31 -1' (3)

[64 31 2 4 0 -17 2 4

Using a machine precision of 16- = .95 x 10 6, the first 59 terms in

7
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the Taylor series expansion are summed to obtain the output

SA= [-22.25880 -1.432766] (4)

-61.49931 -3.474280

Analytic calculation of

2 eA 0 I: -e-l 171 2 4 - (5)

gives an output to six decimal places of

eA = 0.735759 0.551819

[-1.471518  1.16 (6)

which is not even close to the first solution. The problem is with the

intermediate results A16/16! and A17/17! which have elements greater than

106 in magnitude but of opposite sign. Therefore, the intermediate elements

have absolute errors which are larger than the final result. It is impor-

tant to realize that the problem is with arithmetic truncation and not

with the series truncation."

The matrix exponential can also be calculated with a series of PADE

rational approximants or continued partial fractions. Moler and Van Loan,

1978:808 state that "roundoff error makes PADE approximants unreliable."

Furthermore, difficulties with matrix inversion make this method inaccurate

"when the A matrix has widely spread eigenvalues." This is exactly the

type of matrix that is generated by the HEATEST program.

The most sophisticated method for using a series approximation

is called "scaling and squaring". This is the same time-consuming method

that was originally employed in HEATEST in the module MEXP. "Roundoff

error and computing costs tend to increase as t hAil, or the spread of

8



the eigenvalues, increases." This is controlled in scaling and squaring

by "exploiting the unique exponential property eA = (eA/m)m.''

"The idea is to choose m to be a power of two for which eA/ m can

be reliably computed, and then to form (eA/m)m by repeated squaring. One

common criterion is to choose m such that 1hAII /m1." The HEATEST module

MEXP tries to save a step by choosing m such that IIAt(/m<3. This technique

tends to keep down the hump. "The scaling and squaring algorithm is one

of the most accurate that we know."

POLYNOMIAL METHODS

The matrix exponential has many interesting polynomial decomposi-

tions. Unfortunately, they contain serious problems for computational

purposes.

CAYLEY-HAMILTON THEOREM: Any function of A can be expressed in

terms of a polynomial in I,A,..., An-l. "This implies that eAt can be

expressed as a polynomial in A with analytic coefficients in t:

n-1

eAt = 2 aj(t)A j " (7)
j=O

Moler and Van Loan, 1978:816 describe a means of generating the func-

tions a.(t). However, this method requires a priori knowledge of the

characteristic polynomial of A, is affected by roundoff error, and is

structurally similar to the naive form of the Taylor series.

LAGRANGE INTERPOLATION, NEWTON INTERPOLATION, and the VANDERMONDE

MATRIX: eAt can be expressed in terms of each of these well-known

formulas. However, these mthods require a priori knowledge of the eigen-

values of A, they are "algorithms of the order of n4 operations (pro-

hibitive except for small n)," and they suffer problems when the

9
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eigenvalues are nearly equal (confluent).

INVERSE LAPLACE TRANSFORMS: These "inverse transforms can be

expressed as a power series in t." Other techniques can also be used such

as Heaviside expansion. "These methods are also O(n4) and are affected

by roundoff error."

ORDINARY DIFFERENTIAL EQUATION METHODS

"Since eAt is a solution to ordinary differential equations, it

is possible to consider methods based on numerical integration." Many

powerful computer programs have been developed for solving O.D.E.'s.

"Methods based on single-step formulas, multi-step formulas and variable

step size" all have two features in common: they are relatively "easy

to use", and they are "relatively time-consuming." "The O.D.E. programs

are designed to solve a single initial value system

x'= f(x,t) with x(O) = x0  (8)

and to obtain the solution at many values of t."

General O.D.E. solvers all suffer from "not taking advantage of

the linear, constant coefficient nature" of the matrix exponential

problem. Instead, they traverse "a sequence of values 0 = tost1

tn = t." Moler and Van Loan, 1978:813 test three published programs

that are general purpose O.D.E. solvers. The results show mainly

that these programs are inconsistent and "very inefficient" for computing

the matrix exponential in their present form. "They repeatedly multiply

various vectors by the matrix A because, so far as they know, it may

have changed since the last multiplication."

L
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MATRIX DECOMPOSITION METHODS

* Methods "based on factorizations or decompositions of the matrix

A" are "likely to be the most efficient for problems involving the larger

matrices and for repeated evaluations of eAt. '' If A is symmetric, then

these methods are particularly simple and effective.

* "All of the matrix decompositions are based on similarity trans-

formations of the form A = SBS
1 . The power series definition of eAt

implies eAt SEBtS -I. The idea is to find an S which is easy to com-

pute. One difficulty is that S may be close to being singular (not

Atinvertible), which means that e may be difficult to compute accurately."

DIAGONALIZATION: "The naive approach is to take S to be the

matrix whose columns are eigenvectors of A." Then we can write AV = VD

where V is the matrix of column vectors

D is the matrix of diagonal eigenvalues

Then the exponential eDt of D is trivially computed by replacing each

eigenvalue x in D by eXt

There are several problems that can arise when using this method.

The first, "a theoretical difficulty, occurs when A does not have a com-

plete set of linearly independent eigenvectors and is therefore defective.

In this case, the method is unworkable because there is no invertible

matrix V of eigenvectors."

The second problem, a practical difficulty, occurs when two

F4  eigenvalues are nearly equal (confluent), but not exactly so. "This can

be illustrated by the example A = X a
0 u

" 11
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The exponential eAt = et

where (X - u) is small but not negligible, computation of the divided

difference

ext .eut

X -U

can result in a large relative error," especially when multiplied by

large a.

A third difficulty arises from calculation of V"1. This is another

source of inaccuracy when using this naive method to compute the matrix

exponential.

JORDAN CANONICAL FORM (JCF): "In principle, the problem caused

by defective systems of eigenvectors can be solved by using a similarity

transformation to the Jordan canonical form." The JCF is P special form

of matrix which consists of all zero's except for square blocks of

non-zero numbers along the main diagonal. These Jordan blocks reflect

the vector subspaces that define the similarity class to which the matrix

belongs. "The exponential of each Jordan block can be calculated in
closed form, and eAt = peitp "  where J Jl""' Jn"' a concatenation

of Jordan block submatrices.

"For example,

if Ji= Xi 1 0 0
0 1 0

0 0 . 1

0 00 Xi (9)

12
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then eJit = exit 1 t t212! t3/3!

0 1 t t2/2!

0 0 1 t

0 0 0 1 (10)

The difficulty with this method is that it cannot be computed using

floating point arithmetic. A single rounding error at the limit of

machine precision may cause a multiple eigenvalue to become distinct

or vice versa, which would alter the structure of J and P." For example,

two matrices

[a and oJ

will have different Jordan forms for any non-zero error e, no matter

how small.

SCHUR DECOMPOSITION: A more reliable method is to use the so-

called Schur transformation A = UTU -1 , where U is a unitary (orthogonal)

matrix and "T is a triangular matrix that will always exist if A has

real eigenvalues. If A has complex eigenvalues, then T will be quasi-

At Tt-1
triangular with 2-by-2 blocks on the main diagonal." The e = UetU

This method is especially convenient because of the well-known property

that the orthogonality of U implies that the inverse matrix U" is equal

to the transpose matrix UT

The only difficulty occurs when the matrix T has eigenvalues that

are nearly confluent, which can induce a magnification of roundoff error

when computing eTt. "This is a general problem for all matrix decomposi-

tions of the form A = SBS "I and involves two objectives:

13
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A. Make B close to diagonal so that eBt is especially easy to

compute." The Jordan form epitomizes this objective.

"B. Make S well conditioned so that computational errors will

not be magnified." This goal is realized by the Schur method.

A practical compromise can be achieved between these objectives.

The idea is to "cluster the nearly confluent eigenvalues" into block

diagonal form, using a somewhat non-orthogonal matrix S if necessary.

Then special techniques can be used to compute eSit for each block.

The simplest technique would be to replace each eigenvalue in the block

by the average of all those in the block. The best criterion for cluster-

ing eigenvalues remains to be determined.

SPLITTING METHODS

Moler and Van Loan discuss a special characteristic of the matrix

exponential and present the formula eA = (eB/meC/m)m. "This approach to

computing eA has potential interest when the exponentials e and eC

can be accurately and easily computed." Then it might be convenient

to split A = B + C.

"The efficiency of this technique is somewhat difficult to assess

because it depends strongly on the scalar" elements of A. Under general

conditions, the splitting method is considered to be much less efficient

than simply scaling and squaring the Taylor series.

OVERALL EVALUATION OF THE METHODS

A large segment of the available project time was dedicated to

studying the survey by Moler and Van Loan, 1978, and a selection of the

numerous papers that are referenced by them. For purposes of this thesis,

the most attractive computational methods were extracted from the survey,

14
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organized as presented above, and evaluated for application to the

problem at hand.

Polynomial techniques were quickly discarded because they

require prior knowledge of the eigenvalues, and because they generally

require O(n4 ) floating point operations for computer computations.

The splitting method is generally untried and does not offer

any special advantage for the purposes of the HEATEST program.

Ordinary differential equation solvers seem to have potential

- for general application to computing functions such as the matrix

exponential, and the development of an efficient software program could

possibly form the basis for a dissertation. That type of investigation

seems to be beyond the scope of this thesis, however. Only series and

matrix decompositions remain for serious consideration.

A statement is made (Moler and Van Loan, 1978:p. 827) that the

only generally competitive series method is that of scaling and squaring.

This technique was the one used in the original HEATEST implementation,

calculating up to 38 terms of the series for each subinterval of time

for a matrix of order n 13. The extensive matrix multiplications

required for computing this series is the driving factor behind the

excessive use of computer processor time, even though module MEXP uses

the Cayley-Hamilton theorem to increase efficiency.

Matrix decomposition seemed to offer the best potential for investi-

gation. The orthogonal property of the U transformation matrix allows the

inverse U" to be easily obtained because it equals the transpose UT

.  and it also preserves the condition number (see Chapter V for definition)

of the matrix without magnifying the roundoff errors that are introduced

by exponentiation.
15
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A decision was made to investigate the Schur technique for matrix

decomposition. At the same time, the form of the A matrix could be

examined for possible ways of developing a specialized multiplication

*-. algorithm which could be used to more efficiently calculate the original

- series summation. This investigation and program development will be

detailed in the next section.

I1
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III. COMPUTING THE MATRIX EXPONENTIAL (DEVELOPMENT OF MEXP2)

THEORY

The HEATEST program uses a module named MEXP to compute eAt by

means of the scaling and squaring method. MEXP and its support modules

are listed in Appendix A, along with a structure chart which diagrams

their interaction. The first efforts to develop an improved module, MEXP2,

were based on the idea of a more efficient matrix multiplication algorithm

which would decrease the computation time by a linear factor. This

required an examination of the characteristics that define the typical

A matrix to be processed.

A random system matrix of order 10 was obtained from HEATEST

and used as a test case for investigation. This matrix is displayed in

Figure 3 and is seen to have the following properties:

A. Tridiagonal form.

B. Not symmetric, but nearly so.

C, Diagonally dominant. This means that each diagonal value

is greater than the sum of all other numbers in that row or column.

0. All entries in the main diagonal have negative sign, while

all entries in the off-diagonal rows have positive sign.

E. A wide range of values.

These properties will be seen to have great significance.

The first consideration was to attempt to exploit the inherent

sparseness of the tridiagonal matrix. Several published computer codes

are already available for manipulating tridiagonal matrices and for

storing the non-zero values in a reduced form which saves on primary

computer memory. One source is the International Mathematics and
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Statistics Library (IMSL). This idea proved not to be useful for at

least two reasons. First of all, the reduced form of storage would

not help unless implemented throughout the entire HEATEST program, which

was not feasible in the time available. More importantly, the tri-

diagonal form is not closed under the operation of matrix multlplicatien,

as shown in Figure 4. It can be seen that the resulting matrix bandwidth

increases by two off-diagonal rows after each operation. This property

is not conducive to a specialized algorithm for calculating series

summations.

A more promising candidate would be the triangular form shown

in Figure 5, which is closed under matrix multiplication. The sparse-

ness of the triangular form can easily be exploited, as seen in Figure

7. The full formula for upper triangular multiplication is shown in

Figure 6, and the resulting non-zero terms are shown in Figure 7. It

would not be difficult to devise a computer code tnat would only include

the resulting non-zero terms in its computations. The efficiency of

this technique could be significant. By looking at diagonals, one

can see by inspection that the number of resulting non-zero element

multiplications can be described as
n

1(n) + 2(n - 1) + ... + n(1) = K(n + 1 - K)

K=1 n n

- (n + 1) K K

K=1 K=1

= (n + 1)n(n + 1) - n(2n + 1)(n + 1) = n(n + 1)[3(n + 1) - (2n + 1)
6 6 6

n(n + 1)(n + 2). This sum has the value .22(n ) for n = 10, and it
6

approaches the value .16(n3) as n increases. Compare this to the usual

matrix multiplication which requires n3 operations.

18
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The algorithm above appears to be a promising technique for

efficient computation of triangular series summations. A triangular

scaling and squaring series method could be used to evaluate eTt for

a matrix T which is obtained from the Schur decomposition of A = UTU - .

This interesting innovation was never tested, however, due to a lack

of project time and the successful implementation of an even more

*efficient method.

Moler and Van Loan, 1978:823, recommend using a different technique

which can calculate any analytic function of a triangular matrix. This

method is described in Parlett, 1976, and Fortran language program

modules are available from Parlett, 1974. This method is based on a

recurrence relation that exists among the elements of the triangular

function matrix F, where F is obtained by using the algorithm of

UEquations (12) and (13).

A lemma is presented (Parlett, 1976:118) that if T is a block

upper triangular matrix, then a function matrix F = f(T) is also of

block upper triangular form with the same block structure. The method

starts by first computing the diagonal blocks (or elements) of F from

Frr = exp(Trr). Then the upper triangular blocks (elements) can be

determined from the formula
s-r-1

T rrFrs - FrsTss (Fr,r+k Tr+k,s - Tr,s-k Fs-k,s) for r<s (12)

k=O

for successive diagonals, moving in turn away from the main diagonal.

Each block Frs is determined as a linear combination of lower diagonal

blocks which are in row r and column s of the function matrix F. Then

the right side of the equation is known, and the elements of block Frs
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are obtained by solving a set of simultaneous equations

TrrFrs F rsTss (13)

Three cases can occur:

A. The Schur matrix is strictly triangular and the eigenvalues

(diagonal elements) are all distinct. This is the simplest case, and

the calculations are straightforward. A Fortran program module is-

supplied by Parlett, 1974:15.

B. The Schur matrix T has quasitriangular form with at least

one 2-by-2 block on the main diagonal, and the eigenvalues are distinct.

This case is illustrated in Figure 8. The computation of F in this case

proves to be a more complicated programming exercise. The block structure

must be discerned, block multiplication must be performed with variable

size blocks, and the resulting linear system equation must be solved

with a possible need for pivoting,

C. The Schur matrix T has confluent eigenvalues, in particular

when Trr = Tss. In this situation, the basic recurrence formula breaks

down and an alternative must be used. In addition, calculations in finite

precision arithmetic can return inaccurate results when Trr is very close,

but not exactly equal, to Tss. This case can be treated as follows:

1. Eigenvalues that are very close can be replaced by a confluent

eigenvalue which is equal to the average of the similar eigenvalues. The

menaing of "very close" is not specifically defined.

2. Confluent values are treated with an alternate formula

(Parlett, 1974:3) which is derived from Newton's form of the interpolating

polynomial and which is manipulated to obtain Frs.

3. Then the general formula (13) can be applied. This case

20
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requires on the order of n4 floating point arithmetic operations. A

Fortran program module is supplied for this case, also (Parlett, 1974:16).

IMPLEMENTATION

The development process was started by generating a baseline

example. Under usual software development conditions, the most efficient

strategy is to use the main program as the driver for new submodules.

However, HEATEST was too large, in both memory and required execution

* time, to be operated from an interactive CYBER computer terminal with

"- the desired immediate turnaround time. Therefore, the sample matrix

in Figure 3 was obtained from HEATEST and used as a test case. A separate

test program was used to compute the exponential of the test matrix

by means of the original MEXP module and its supporting submodules.

The result (Figure 9) was used as a baseline reference for future com-

parison to ensure accurate function computation. However, at this point,

there was still some uncertainty as to the degree of accuracy that was

returned by MEXP.

The next step was to generate the matrix exponential by using

Parlett's algorithm. This required the following procedure:

A. Generate a Schur orthogonal transformation matrix U such that

A = UTU 1 where T is of upper triangular or quasitriangular form.

B. Determine the eigenvalue structure of the matrix T.

C. Apply the correct treatment of Parlett's algorithm to obtain

F = exp(T).

D. Calculate eA = UFU "1 and print the result for comparison.

These steps will be discussed in turn.

21
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It is recommended (Moler and Van Loan, 1978:823) to use Fortran

modules ORTHES and HQR from EISPACK, 1976 to calculate the transforma-

tion matrix Q. ORTHES is used to transform any general matrix into

upper Hessenburg form, in which the first subdiagonal is the only non-

zero lower diagonal row. This was not required for purposes of HEATEST,

since the tridiagonal form of the A matrix is effectively a subcategory of

the upper Hessenburg form. The HQR module acts on the Hessenburg form

to obtain an orthogonal U matrix by the iterative QR algorithm. The

EISPACK HQR module was modified slightly by the author of this thesis

to eliminate additional accumulations of the eigenvalues of A. This

reduced the required number of input/output parameter arrays for HQR,

which in turn reduced the amount of primary computer memory needed to

operate the module. For the test matrix in Figure 3, HQR generated the

transformation matrix U in Figure 10. It is well-known that for a given

orthogonal matrix U, the inverse U-I is just the transpose UT. The

matrix in Figure 10 was multiplied by its transpose to verify orthogonality

and, in fact, the identity matrix was the result.

The next step in the exponentiation procedure is dependent on the

eigenvalue structure of the matrix T. The test matrix in Figure 3 was

transformed to the triangular matrix in Figure 11. The main diagonal

elements are the eigenvalues, which are seen to be all non-zero, real,

and distinct. The wide spectrum of the eigenvalues indicates a poor

condition of the matrix for computational purposes.

This is all very fine for the test case, but a vital question

remains as to whether every A matrix generated by HEATEST will exhibit

a similar eigenvalue structure. One basis for conclusion would be to

evaluate all the system matrices that are generated during one reentry
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flight. If these matrices all had the same structure, then an argument

could be made to project that result to the general case. However, Hodge,

1982, recommended an analysis of the generating equations in the hope of

mathematically proving a general result. The following paragraph presents

an analysis which establishes this result, except for the confluence of

eigenvalues.

HEATEST generates the A matrix according to the system of equations

in Figure 12 (Hodge, Phillips, and Audley, 1981:4) which describe the

energy balance of the heat propagation in the Shuttle Thermal Protective

System (TPS). The first equation is of fourth order and describes the

interactive heat transfer at the surface of the TPS. This equation is

responsible for the non-symmetric character of the system matrices. A

cursory analysis of the energy balance equations will reveal that every

A matrix generated by HEATEST will be both tridiagonal and diagonally

dominant. Furthermore, the elements of the main diagonal will all have

the same sign, and the elements of the two off-diagonal rows will all

have the same opposite sign. Diagonal dominance ensures that none of

the eigenvalues will be equal to zero. Another theorem was found

(Marcus and Minc, 1964:166) which proves that all Jacobi (tridiagonal)

matrices with the above characteristics have a spectrum of eigenvalues

which are both real and simple (no multiple values).

The above analysis is very useful, but a nebulous question

4 remained as to whether any of the distinct eigenvalues would be so

nearly confluent as to induce computational errors in the calculations.

Hodge, 1982, felt that the eigenvalues would be closest to each other

at the beginning of Shuttle reentry when heat transfer is slight and

the surface temperatures are closest to the reference values during

23
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on-orbit conditions. This case was simulated by applying Parlett's

algorithm to a similar, but worst case, test matrix which was obtained

from a thin skin metal plate that generated temperature data in a wind

tunnel. This metal plate had a uniform temperature through its cross-

section, and the system matrix was both singular (non-invertible) and

not diagonally dominant. This situation could not occur within the thermal

shield itself, but it is similar to the thin skin structure of the Shuttle

which is directly underneath the TPS.

The Schur transformation of this worst case matrix produced a

triangular T matrix which had one eigenvalue equal to zero, but which

also exhibited a spread of the eigenvalues across the spectrum. Based

on this demonstrated lack of confluence, a decision was made to proceed

by using the simplest case (case A) of Parlett's algorithm, which can

be applied even to singular matrices as long as the eigenvalues are

distinct.

The module FUNCT was developed by this author from subroutine

FUNUPPD (Parlett, 1974:16). A problem was experienced with underflow

when initially computing the exponential of the diagonal elements of the

T matrix. This problem was solved by means of an IF statement that

returns an exponential value of 0.0 whenever the input diagonal entry

has a negative magnitude larger than (-43). This guarantees 14 decimal

places of accuracy, which is over the limit of single precision on

the CYBER computer.

A module MEXP2 was then developed by this author which used

module HQR to generate the Schur transformation matrix, and then it

used FUNCT to calculate F = exp(T) by Parlett's algorithm. When used

on the test matrix in Figure 3. the matrix result of MEXP2 agreed
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exactly with Figure 9, from MEXP, to the five decimal places that were

displayed.

RESULTS

Module MEXP2 was incorporated into the HEATEST program with some

software difficulties that will be discussed in a later section. HEATEST

was executed over a range of matrix dimensions, using both MEXP and MEXP2

for comparison as to both accuracy and execution time. Each iteration

of HEATEST produced 110 executions of the exponential matrix function.

These execution times were averaged and the results are presented in

Table 1 and Figure 13. While returning comparable accuracy, MEXP2 showed

that the Schur decomposition method was dramatically faster than the

series method of module MEXP.

y2

L
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IV. COMPUTATION OF THE RICCATI INTEGRAL (DEVELOPMENT OF INTEG2)

THEORY

The performance of module MEXP2 demonstrated that the scaling

and squaring series method was a relatively inefficient technique for

computing the matrix exponential. The module INTEG used a similar series

method for computing the Riccati integral, so it seemed worthwhile to

investigate other techniques for computing this operation, also. Moler

and Van Loan reference a paper (Levis, 1969) which analyzes the compu-

tation of this integral by the method of Simpson's rule.

Simpson's rule is an attractive numerical method when the speed

of computation is important, because the rule exhibits an unusual combin-

ation of both simplicity and a high degree of accuracy. Simpson's rule

approximates an integral by sections of a parabolic curve, rather than

by the cruder rectangle methods. Yet, the simplest formulation of the

rule consists of a sum of only three approximation terms. The accuracy

of the rule is also very good. The computation error is a function of

5
h , where h is the interval between approximation points. To obtain a

higher degree of approximation, it would be necessary to use a more

cumbersome Newton-Cotes formula with at least 5 approximation terms

(Young and Gregory, 1972:369).

Simpson's rule approximates the Riccati integral
tn  e-Ate-'d hr A

VQe dt where A' = A transpose (14)

tn-i At = tn -tn.i
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q

with the formula

V h [F(O)QF'(0) + 4F(h)QF'(h) + F(2h)QF'(2h)] (15)
3

where h : t/2, F(t) : eAt

so we have

V h e-A-OQe -A'.0 + 4 e-AhQe'A'h + e-A(2h) Qe-A' (2h) (16)

or
V t[IQI + 4e At/

2 Qe-A't/2 + e-AtQe "At '.

2.3 (17)

where I = the identity matrix

Finally,

V t [Q + 4e'At/2Qe-A't/2 + e'At Qe-A't (18)
6

Calculation of the approximation formula for the Riccati integral

will require four matrix multiplications and four exponential calculations.

In what ways can this situation be improved? The number of exponential

computations can be cut in half by using the well-known expression
.'-A't At)

.e =(e ' This equality is a consequence of the Taylor series

expansion of the matrix exponential.

The necessary calculations can be further simplfied, however,

I .by considering both terms in the Riccati equation (1). Even requiring

only two exponential computations, the Simpson's rule method of computing

*i the Riccati integral is only comparable in effort to the original Taylor

series method which summed the first 12 terms in the series expansion.

Consideration of the entire Riccati equation reveals that a total of

three different exponential terms must be evaluated: e At/2 e At

and eAt. The use of a mathematical formula which relates these terms
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could lead to increased efficiency in the computation of Simpson's rule

and of the entire Riccati equation.

Consider the scalar exponential relation es  = e e. Does this

relation also hold true for the matrix exponential? In fact, it does.

b A proof was found (Bellman, 1970:170) which is displayed in Figure 14.

It is then possible to calculate the entire Riccati equation by making

only one direct exponential evaluation, that of the term eAt/2. Using

the matrix splitting formula es+t = eSet yields the relation

-At (e-At/2 )(e- At/2) = (e-At/2)2  (19)

then eAt can be obtained by computing the direct matrix inverse eAt = (e-At

This strategy combines the qualities of easy implementation and efficient

execution.

IMPLEMENTATION

The implementation strategy for incorporating INTEG2 into the

HEATEST program was quite different from the case of MEXP2. MEXP2 repre-

sented a complicated arithmetic process which was performed on one piece

of input data, i.e., the A matrix. A small test program was used to

prove the calculation method for a particular sample input matrix, and

the results could be readily verified.

INTEG2 represented a different situation. The calculation of

Simpson's rule was relatively simple, but it was technically difficult

to cross-check the result. The complicated structure of HEATEST made

it difficult to extract matching A and Q matrices for a sample input.

Therefore, the following implementation strategy was used: write a

- program module for INTEG2, substitute the module into HEATEST, and compare

the resulting parameter estimations and error covariance to those of
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the previous Taylor series method.

The programming exercise actually consisted of writing two main

modules: INTEG2 and TPSOSP3. Originally, TPSOSP2 constructed the entire

Riccati equation by consecutively executing MEXP and INTEG to compute

the first and second terms of Equation (1), respectively. The revised

structure has the form of embedded shells. MEXP2 is called by INTEG2 to

calculate the matrix exponential e-At/2. INTEG2 uses this value to

compute Simpson's rule in evaluating the integral function. INTEG2

_' is called in turn by TPSOSP3 to obtain the integral value and, also,

the value of eAt. TPSOSP3 then uses a matrix inverse module to obtain

eAt, generates the first term of Equation (1) from eAtgenerates the

second term of Equation (1) from the integral value, and adds the terms

to obtain the final result.

Development of the modules INTEG2 and TPSOSP3 was divided into

two stages. The first and most important stage was the development of

software manipulation tools, such as a matrix inversion module. The

second stage was the combination of these manipulation tools to construct

the actual computation formula.

MEXP2 satisfied the first software tool requirement, which was

to compute the matrix exponential function. The second tool requirement

was for a module to perform the matrix inverse computation, which is

a fairly simple process in theoretical terms. However, it is much more

0 of a challenge to program this function in an efficient manner which

does not magnify floating-point round-off errors. In this case, the

* . Linpack User's Guide, 1979 provided efficient and reliable code for

-. the matrix inverse function. The negative'aspect of this tool was

that 300 lines of code were added to HEATEST in order to perform a
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single operation. Evidently, such is the price of performance.

The Linpack Code was given a dry run by feeding it the orthogonal

transformation matrix U which is displayed in Figure 10. In accordance

with theory, the resulting inverse matrix was exactly equal to the

transpose of U. This test generated a high level of confidence in the

effectiveness of Linpack module SGEFA and Eispack module HQR, and also

in the ability of the programmer to successfully implement these codes.

The third software tool requirement was for a module to perform!T
the triple matrix multiplication EQE T , where Q is presumed to be a

symmetric matrix. HEATEST already contained a module named MAT4 which

seemed to perform exactly this operation, so an attempt was made to

interface with MAT4. MAT4 was also very attractive because it apparently

worked with an exceptionally small number of intermediate storage arrays.

* Unfortunately, the construction of MAT4 was nearly impossible to decipher,

because it used one-dimensional arrays to represent two-dimensional

matrices in a rather confusing manner.

An attempt was made to validate MAT4 by incorporating it into the

MEXP2 test program. As mentioned in a previous section, MEXP2 calculated

the Schur transformation UTUT. MEXP2 was reprogrammed several different

ways over a period of two weeks, without achieving any !uccess with the

use of MAT4. Finally, it became necessary to trace tediously by hand

the operation of MAT4 on some sample matrices of order 4-by-4. The

results were illuminating.

MAT4 used minimal storage space because it only calculated the

upper triangular half of the resultant matrix. When returning the

final values, MAT4 simply assumed that the resulting matrix was symmetric.

MAT4 had been ambiguously documented in a way that could be taken to
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mean that the central input matrix, rather than the output matrix, was

presumed to be symmetric. Therefore, it was determined that MAT4 waL

useless for purposes of INTEG2, and a new module named TRI was written

to satisfy this final software tool requirement, TRI was then incorporated

into the MEXP2 test program as a cross-check, with perfect results.

At this point, all the necessary software tools were available

and proven. The modules INTEG2 and TPSOSP3 were then written to con-

struct the Riccati equation from the software tools, and these modules

were then substituted into the HEATEST program. This second stage was

performed with a certain amount of trepidation about the computation

results that would be produced. The software tools had all been meticulously

proven, but the final evaluation depended on combining a large number

of theoretical manipulations into a couple of program module quantum

y- jumps. It seemed unlikely that so much theory could be included in the

module TPSOSP3 without an inevitable flaw, and it seemed unlikely that

such a flaw could be easily isolated.

When these modules were eventually incorporated into HEATEST,

it so happened that one dummy parameter was inadvertently omitted from

a subroutine call. This single mistake caused several discouraging

interface complications. It was necessary to expend considerable

effort to merely discover the existence of a logical error. Finally,

a simple debugging trace was used to locate the problem module and to

correct the missing input parameter.

RESULTS

INTEG2 was successfully incorporated into the HEATEST program,
I

and execution times were measured for INTEG versus INTEG2 over a range
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of matrix dimensions. The results, displayed in Table 2 and Figure 15,

were as follows:

A. The time curves in Figure 15 show a significant improvement

in execution speed when using Simpson's rule. It should be mentioned

that the curve for INTEG2 represents only the time difference between

TPSOSP2 and TPSOSP3 that resulted from the use of Simpson's rule, and

does not reflect the simultaneous benefit of the improved calculation of

the matrix exponential.

B. The desired aerothermodynanic parameters appear to convergeF"
to the same values whether using INTEG or INTEG2. However, the use of

INTEG2 seems to require a couple of extra iterations of HEATEST to obtain

the same amount of convergence as before. This is consistent with a

simultaneous change from 2.45 to 3.28 in the accumulated covariance of

w , error between predicted and measured temperature that also occurred.

Some of this difference can be attributed to a magnification of roundoff

error that occurred during the inversion of the matrix exponential e-
At

which probably destroyed about four decimal places of accuracy. The

rest of the error must be taken to reflect the inherent limitations of

Simpson's rule. However, the HEATEST program runs dramatically faster

with module INTEG2, even when extra iterations are taken into account.
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V. ANALYSIS AND CONCLUSIONS

NORMS, CONDITION NUMBER AND ACCURACY

The scaling and squaring series method, used in both modules

MEXP and INTEG, is formulated on the concept of a matrix norm. A matrix

norm can be defined in several different ways for theoretical purposes,

* but the general idea is to provide a comparative measure of the size

* of a matrix in terms of the magnitude of its eigenvalues. In section

two of this paper, it was noted that the norm of matrix A must have a

value less than 1 in order to prevent the growth of intermediate series

elements. The scaling and squaring method divides A by a factor 2
k

such that1 IV2k<l. The module MIEXP computes the matrix exponential
e~At/2k /e

et ,and the result is squared k times. Since the largest eigenvalue

in a sample matrix A was found to be on the order of 28,000, it was

expected that the scaling factor k would probably be tremendous because

the norm would be very large. However, it was found that the module

TPSOSP2 represents time in hour units, even though the actual temperature

samples were taken every second in real time. Therefore, the value of

t is always less than 1/3600, so the scaling effect on eAt was much

less than expected. The module XNORM was used by MEXP and INTEG to

estimate the matrix norm. The value of XNORM was examined during

executions of HEATEST over a range of matrix dimensions, and the estimated

* norm was always in the range 75,000-77,000 with a scaling factor of

k 5. The norm was about half this large on all succeeding iterations

of HEATEST.
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Every matrix can be assigned a condition number which indicates

*the amplification of roundoff error that can occur when solving a

linear system, such as when calculating the matrix inverse. A large

v . condition number indicates that the linear system is very close to

being linearly dependent, so the matrix is nearly singular. A similar

problem can arise in the solution of matrix differential equations

where the eigenvalue ratio emax/emin is very large, in which case the

matrix is said to be "stiff".

The A matrices of HEATEST exhibit some stiffness because the

nodes of the temperature grid are necessarily closer together near the

top and bottom surfaces of the Shuttle insulation. This is done in

order to accurately represent the interfaces between the layers of the

insulation, but the result is a matrix with a rather poor condition for

computations. For example, the matrix in Figure 11 can be seen to have

diagonal eigenvalues that range from 0.9 to 28,000. (For a discussion

of condition numbers, refer to Young and Gregory, 1973, Vol. II: 564,

811,943)

The condition number of the HEATEST matrices was determined by

calculating emax/emin for those eigenvalues on the main diagonal of all

triangular matrices in module MEXP2. For matrices of order 13 and 30,

the condition number during the initial time propagation of HEATEST was

found to be in the range 75,000 to 77,000, similar to the value of the

!4 estimated norm. This would indicate an expected loss of 4 to 5 digits

of precision when calculating a matrix inversion, such as the case of

TPSOSP3 in obtaining eAt from e"A t

Matrix transformations also provide an opportunity for the

condition number to cause error. This particularly applies to the

34



matrix S-1 which is used in the diagonal transformation A = SDS -1. One

advantage of using the Schur triangular transformation A = UTU "1 is that

all orthogonal matrices U have a condition number of 1, so no additional

error is created during matrix multiplication or inversion.

The accuracy of the module HQR (that calculates the matrix U)

is determined by an internal parameter named MACHEP which specifies

the precision goal of the QR algorithm. The value of MACHEP was varied

over the range from 10-  to 1013 in order to determine the effect on

HEATEST. The results showed that the QR algorithm must converge very

quickly, because the total execution time of HEATEST only increased

from 178 seconds to 179 seconds as the precision value of MACHEP was

increased. Therefore, all further use of HQR was done with the value

of MACHEP set to 10-13, which is the single precision limit of the

CYBER computer. The values of eAt were then compared for matrices of

order 8 after computation by MEXP and by MEXP2. The results of the

two methods showed an agreement of 10 to 13 significant digits. It

is difficult to judge which method is the more precise.

The computation of the Riccati integral

J -At -A't (19)

.4- t
n-i

by Simpson's rule has a theoretical error bound of

I En (At)5  d4  At -A't (20)n 1j80N T  [ Q-eAte-'t

where n/2 = 1 is the number of subintervals in the approximation,

according to Levin, 1969:410. Since time is represented in hour units

and Atmax = 1/3600, it would seem that the expected error would be
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close to the limit of computer precision. However, the results of modules

INTEG and INTEG2 were compared for matrices of order 8, and the answers

showed agreement only of 5 to 9 significant digits in the mantissa

- (right of the decimal point).

Evidently, the accuracy of module INTEG2 is inferior to that of

* INTEG, because the covariance of the a priori temperature propagation

was increased slightly, from 2.45 to 3.28, for matrices of order 13.

This seems to explain the observation that the aerothermodynamic para-

meter values appear to converge somewhat slower per iteration of HEATEST

when using INTEG2. However, the parameters seem to converge to the same

values whether using INTEG or INTEG2 to obtain the result. It can be

seen in Figure 16 that INTEG2 is nuch more efficient in execution time.

EXECUTION PERFORMANCE

Analysis of the loop structure of module MEXP shows that the number

of floating point operations required for each execution is

2n4 + (k - 3)n3 + (3/2)n 2 + 79n + 2k + 3

where n is the matrix order

k is the average scaling and squaring factor

According to Parlett, 1974:4, the operation count of module

MEXP2 is only 1On3 to 15n 3 for the Schur decomposition plus (1/3)n3

to build up the triangular function matrix.

° Analysis of the loop structure of module INTEG shows that the

floating point operation count for one execution is

3 2
(25 + (5/2)k))n + (35/2)n + 16n + 45 + 2k

where n is the matrix order
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k =5 is the average scaling and squaring factor

Module INTEG2 has an operation count of only 6n3 + 2n2 , which con-

sists mainly of 5 matrix multiplications and 1 matrix inversion.

The overall effect of these improvements on the HEATEST program

is displayed dramatically in Figure 16. This graph shows that the

large coefficients in the operation count of INTEG have a greater effect

on matrices of small order than the n4 term in the operation count of

module MEXP.

SOFTWARE DESIGN CRITIQUE OF THE HEATEST PROGRAM

The most favorable design feature of the HEATEST program is the

manner in which it is organized into submodules, each of which performs

a well defined function. This feature was conducive to further software

development because of the ease with which alternative methods could be

substituted into the program.

The negative software features of HEATEST consisted of inadequate

documentation, lack of source references for utility modules, and a lack

of top-down logical program structure within the submodules. These

features prompted some classic software development problems during the

course of this project. These situations are listed as follows:

1. During the investigation of modules MEXP and INTEG it could

have been instructive to print out the values of the intermediate series

terms. This would have demonstrated the extent of the growth of inter-

mediate series elements, and it might have shown whether the series

could be truncated after a smaller number of terms were computed.

Unfortunately, this investigation was precluded because the internal

coding of these modules was almost indecipherable. MEXP, INTEG, and
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several other software modules had been procured from a commercial

source, and the only available documentation was limited to a descrip-

tion of inputs, outputs, and the general computational strategy.

This black box program construction was understandable since

HEATEST was originally written as a prototype in a research environment,

where internal documentation was a secondary consideration. However, this

feature proved to be an obstruction to the research effort of this

thesis. The replacement modules 1EXP2 and INTEG2 should be a software

engineering improvement to the HEATEST program because these modules

have a simple sequential internal structure, all intermediate steps

have descriptive comments, and source references are listed in each

major submodule.

2. Documentation is almost non-existent throughout the body of

the HEATEST program code, and some of the few existing comments are

misleading. As a consequence, this author experienced two weeks of

delay in a fruitless effort to interface INTEG2 with module MAT4.

Now that HEATEST is becoming established as a useful tool, it should

be upgraded with descriptive comments at the earliest opportunity.

This will preclude the inevitable problems from insufficient program

clarity.

3. A final example illustrates the inadequate documentation of

the HEATEST program. After the development of module MEXP2, it was

4 necessary to analyze the structure of module TPSOSP2 in order to

properly interface them. Although J.K. Hodge is the person most

familiar with the programming details of HEATEST, even he found it

necessary to consult Audley, 1982 in order to decipher some of the

mathematical functions of module TPSOSP2. At least these particular
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mathematical functions are now well documented in the replacement module

TPSOSP3.

SOFTWARE DEVELOPMENT PROBLEMS

As anticipated, there were two types of development problems that

hindered the pace of this project. These were:

1. Programming language difficulties

2. Use of the AFIT Cyber computer resource

These problems are discussed in detail below.

It was anticipated that the Fortran 77 standard (Fortran 5)

might prove to be a difficulty, since this user had last prograiamed

in Fortran about 12 years prior to the start of this project. As it

turned out, the major language problems were caused by the deficiencies

of Fortran in representing variable size storage arrays. This feature

caused several conflicts when the first attempts were made to interface

the replacement modules into the HEATEST program. In order to overcome

this difficulty, it was necessary to transmit the storage arrays through-

out the entire HEATEST program by means of either COMMON statements or

as dummy subroutine parameters. The danger of this strategy is that

later changes to a local module can cause global errors to propagate

throughout the entire program.

Another type of language problem was caused by the practical need

to use HEATEST to process temperature node sets of various dimension.

The HEATEST program is actually composed of several modules that are

stored in special form in a Cyber UPDATE library. At the time of pro-

to provide COMMON statements that define the appropriate dimensions of
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-l . the various storage arrays. This is a very flexible arrangement for

the dedicated user who must process assorted data sets. However, the

complexity of the correction sets and the unfamiliar UPDATE control

*;. language were impediments to this user during the software development

process.

The characteristics of the AFIT Cyber computer environment caused

continual frustration and difficulty throughout the entire course of

this project. It will suffice merely to list the following problems

that resulted from the administration of Cyber accounts and the idio-

syncracies of the Cyber computer operating system:

1. Accidental revocation of the computer password for this

project.

2. Periodic erasure of several working files, and the mysterious

purging of one complete UPDATE library.

3. Non-availability of computer terminals, even late at night

and on weekends.

4. Program turnaround times of 24 to 48 hours.

5. Occasional shutdowns of the Cyber computer system for several

days, due to maintenance problems and system reorganization.

ea 6. Unfriendly characteristics of the Cyber interactive operating

system and its primitive line-oriented editor utility.

FURTHER AREAS FOR INVESTIGATION

- Due to time limitations, there are several aspects of this

project that could not be sufficiently examine. These topics are

described here in detail.

1. Examination of the intermediate terms in the scaling and
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squaring Taylor series. These terms could be checked to discover the

existence of any intermediate element growth. It is also possible

that the series could be further truncated, especially module MEXP

which sums (25 + n) terms where n is the order of the matrix A. This

could not be examined because modules MEXP and INTEG were indecipherable

and would probably need to be reconstructed.

2. Moler and Van Loan, 1978:828 state that the scaling and

squaring method can be implemented with the order of n3 floating point

4operations. Loop analysis of module MEXP showed O(n ) operations, so

this could be an inefficient implementation. An attempt could be made

to rewite MEXP with O(n ) operations, and to examine the efficiency of

this implementation in comparison to MEXP2, which used the Schur decompo-

sition.

3. Use the algorithm that was developed in Section 3 of this paper

for matrix multiplication of triangular matrices. This algorithm could be

used in place of Parlett's method to make a series computation of the

matrix function, after performing the initial Schur triangular decompo-

sition. This method would probably be inferior to Parlett's method,

however.

4. Investigate the efficiency of the diagonal transformation

A = SDS 1. This matrix decomposition is now feasible because analysis

of the nature of the A matrix, from section 3 of this paper, proved that

a distinct set of eigenvalues will always exist. The speed of this

method would depend on the efficiency of the algorithm which constructs

the transformation matrix S. This method would probably be inferior

to the Schur decomposition in accuracy, however, due to the condition

number of the A matrices. There would be a probable loss of 4 to 5
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significant digits when performing matrix inversion to obtain the

transformation matrix S A further loss of accuracy would occur when

the matrix e-At is inverted in module TPSOSP3 to obtain the value of

eAt for calculating the first term of the Riccati equation.

5. Further analytical and computational effort could be made to

investigate the accuracy of the results of Simpson's rule from module

INTEG2. It is not exactly clear what effect this accuracy has on the

covariance of temperature propagation in the HEATEST program. The

covariance appears to be somewhat greater, but the extent of the increase

is not well known. The effect of this covariance increase on the con-

vergence of the aerothermodynamic parameter values is also in question.

CONCLUSIONS

Matrix decomposition methods can be much more efficient than the

familiar Taylor series for computing the matrix exponential function,

especially as the order of the matrices is increased. Many methods

exist for computing the matrix exponential, but only a few are competitive

in both speed and accuracy. The scaling and squaring series method is

both simple and accurate, but the Schur decomposition with Parlett's method

for evaluating matrix functions seems to have comparable accuracy and

much greater computational efficiency.

The scaling and squaring series method can also accurately compute

the Riccati integral n e tQeA'tdt but computational efficiency

of this method is greatly degraded when the A matrix has a large compu-

tational condition number. In this situation, a numerical integration

method such as Simpson's rule can provide a dramatic increase in the
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speed of execution at the cost of some loss of accuracy.

The matrix Riccati equation can be reliably computed for the

HEATEST program with a considerable reduction in execution time by

means of the alternative numerical methods discussed above. The covariance

of temperature propagation is somewhat increased, but the slower iterative

convergence that results is clearly outweighed by the increased efficiency

of overall program execution.

The results of this thesis have been of immediate benefit to the

U.S. Air Force. Within one week after these improved methods were per-

fected, the program code was transmitted to the Air Force Flight Test

Center at Edwards AFB. The improved computational efficiency of the

HEATEST program will not only save on budget money for computer time,

but it also will allow the use of larger matrices that can model deeper

heat penetration into the Shuttle thermal shield. This will result in

a better definition of the envelope of reentry trajectories for the

Orbiter vehicle and, therefore, an increase in its effective mission

capability.

The improved HEATEST program is already in extensive use by the

AFIT Aerodynamics Department, where program turnaround times have been

reduced from one week to less than 24 hours. As a result, new research

is being done about possible coupling effects of the aerothermodynamic

parameters. The HEATEST program also has a potential for application

to the reduction of wind tunnel data by the Air Force Flight Dynamics

Laboratory, now that its execution cost has been substantially reduced.
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I 1 0 0 0 1 1 0 0 0 2 2 1 0 0

1 1 1 00 1 1 1 0 0 2 3 2 1 0

0 1 1 1 0 0 1 1 1 0 = 1 2 3 2 1
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Figure 4. Tridiagonal Matrices Exhibit Bandwidth
Spread Under Matrix Multiplication
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0 0 1 1 1 0 0 1 1 1 0 0 1 2 3
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Figure 5. Triangular Matrices Retain Their Form
Under Matrix Multiplication
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A1  A4  A B1  B4  B

A A Al [B B5  B -

L A 3 A6 AJ 981 3 B6

A B1 + A B2 + A B3  A B4 + A B5 + A B6  A B7 + A B8 + A B9

A 2B 1 + A 5B 2 + A 8B 3  A 2B 4 + A 5B5 + A 8B 6  A 2B 7 + A 5B 8 + A 8B 9

A 1 + A B2 + A B3  A B4 + A B5 + A B6  A B7 + A B8 + A B9

Figure 6. Matrix Multiplication by Elements
Lower Triangular Elements are Underlined.

A1B1  A1B4 + A4B5  A1B7 + A4B8 + A7B9

o"A 5B.5 A 5 8  8 B 5

o o A 9 B 9

Figure 7. Remaining Terms When Lower Triangular
Elements are all Zero
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Figure 8. Shows a Quasi-Triangular Matrix, and the Resulting
Blocks of Various Sizes That Must be Multiplied
for Parlett's Algorithm
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(A) CAPAAX /2U) KA/AUl + KA/AXAU2

4 4
-s(U 1  U.,) + f(caOS.RE)q r

(B) (CAPAAXA12 + CBP A.X212)02 =K/X~

-(K A/Ax A + KB/AX2)U2 + KB/ AX2U3

(C) C B pB(AX il + AX )/20i K B/AXi-1 Ui-1

-(K B/Axi 1 + K BI/AX)U. + KB/AXi U.i41

(D) (C B pBAx L-3/2 + C Cp C XC/12)0 L-2 K KB/AXL-3

-(K B/AXL-3 + K c/tAxc)UL-2 + KC/eAXC UL-1

(E) (C c p C xC/12 + C D pDAXD/12)0L-1 K KC/AXC UL-2

-(K C/AX C + K D/Ax D )UL-1 + K D/Ax D UL

(F CD D /L KD /Ax DULl-1 K D/Ax D UL

Figure 12. System Equations Which Generate H1atrix "A"
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Table I

Comparison Data for Modules MEXP and MEXP2

Matrix Size Execution Time (Seconds)

MEXP MEX02

5 x5 .014 .012

8 x8 .071 .037

9 x9 .. 110

10 x 10 .163 .064

11 x 11 .232

12 x12 .327

13 x 13 .435 .119

14 x 14 .5.95

15 x 15 .778 .198

16 x 16 1.016

17 x 17 1.267

20 x20 .396

25 x 25 .718

30 x 30 1.142
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Seconds

MEX P
Execution Time

1.0

.8

.6

MEXP2
Execution Time

.4

.2

M~atrix
Dimension

5 10 15 20 25

Figure 13. Matrix Exponential Calculation Times
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S

e A(s + t) e As eAt

Proof:

Using the series expansions for the three exponentials and the

fact that absolutely convergent series may be rearranged in arbitrary

fashion, we have

eAseAt Aksjk Amt m

k=O kk0 m=O m!

E skt m

n=O k+m=n km!

'CO
An (s + t)n

n!
n=O

eA(s+t)

Ref: Bellman, 1970: p. 170

Figure 14. Proof of Matrix Exponential Theorem
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Table II

Comparison Data for Modules INTEG and INTEG2

Matrix Size Execution Time (Seconds)

INTEG INTEG2

8 x8 .170 .020

10 x 10 .314 .033

13 x13 .649 .062

15 x 15 .981 .088

20 x20 2.233 .175

25 x 25 4.251 .311

30 x 30 7.272 .509
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Time (Seconds)

INTEG
7.0

6.0

5.0

4.0

3.0

2.0

.4 1.0
I NTE G2

Matrix

5 10 15 20 25 30 ieso

Figure 15. Execution Time of the Riccati Integral
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Table III

Total Execution Time of the Heatest Program Using
Module Substitutions

Execution Time Includes Initial Time Propagation
Plus One Pararjeter Iteration

Matrix Size Execution Time (Seconds)

MEXP, MEXP2, MEXP2,
INTEG INTEG INTEG2

8 x 8 74.5 68.6 38

1 10 x 10 116.3 109.2 50

13 x 13 266.8 198.3 76

15 x 15 413.5 290.6 103

20 x 20 -- - 190

23 x 23 - 252

24 x 24 - 287

26 x 26 -- - 352
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HEATEST Execution
Time (Seconds)
Cyber Computer MEXP, INTEG

400

MEXP2, INTEG2

300
MEXP2, INTEG

200

100

Li Matrix

Dimension
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Figure 16. Total Execution Time of HEATEST Program
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SUB!ROUJTINE TPSOSP2 (DT)
DIMENSIONPH(,)PC8) D(,)DTR)
DIMESION QUE(8,R),A(8,8)
COMMON/MAIN/NPTPCNPTSS ,PIl, PCQD, QDTQUEA

I... IF(DT .L! . 0.0) GO TO 999
DELT-nT/3600.

C COMPUTE LINEARIZED STATE TRANSITION? MATRIX, PliI(K,K+1)
C

NPTS S=N PT PC
CALL MEXP(NPTSS,A(1 ,l),T)ELT,PHI(l,1)

C
COMPUTE MODEL NOISE COVARIANCE, QD(K+I)
C

* CALL EQUATE(NPTSS,NPTSS,QD(1,1),QUE(1 ,I)
CALL MISCALE(NPTSS,NPTSS,A(1 ,l) ,-I .O,A(1 ,l)
CALL INTEC(N4PTSS, A(1,1) ,QO(1,1) ,QDT( 1,1), DELT)
CALL MIAT4(NPTSS,N4PTSS,QDT(l, 1),PIII(I, 1),QD)(l,l))
CALL MISCALE(NPTSS,NPTSS,A(1 ,1),-1.O,A(1 ,1))

C
C COMPUTE ONE-STEP PREDICTED APRIORI COVARIA'NCE, PC(K+l)

* C
CALL '!AT4(NPTSSNPTSS,PC(1 1) ,PHI(l,l1) ,QDT(l ,l))
DO 520 IPC-1lPTSS

* DO 520 JPC=I,N'PTSS
520 PC(IPC,JPC) -QDT(IPC,JPC)+QtD(IPC,JPC)

N PT S SIN F
999 RETURN

ENn
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SURROUTINS MEXP(N,A,T,EA)
DIMENSION A(1),EA(1),C(3n) ,n(31) ,E(30)
COMMONI/MAIN I/NDIMX( 1

* NDIM-NDIM+l
* NN-NDI4N*N

NM I-N-1
IF(N .GT. 1) GO To 5
F.A(l1)=EXP(T*A( 1))
RETURN

5 W-1.0
DO 10 I-1,NNNDIM

* IL =1+NMt1
DO 10 J=I,IL

10 EA(J)-A(J)
Cl -XNnRm( N,A)
IND-O
Lul
Tl1T

15 IF(ARS(Tl*Cl).LE. 3.0) GO TO 20
TI-T /2.
IND-I NDI-1
GO TO 15

20 C2-0.
DO 25 1I=111N, NDIM 1

25 C2=C2-EA(.I)
C2-C2/FLOAT(L)
C(L)-C2
D(L+1 )uO.
IIinN+1-L

DO 35 1-1 NN NnOIM

DO 30 J-I,IL
30 X(J)=EA(J)

X(II)-X(II)+C2
35 II-II+NDIKI

IF(L .EQ. NY GO TO 40
CALL 'IMUL.(X,A,N,N,N, EA)
W-'l*T1 /FLOAT(L)
L-L4-l
GO TO 20

*40 CONTINUE
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C CAN CHECK X:O FOR ACCURACY
J-N+2 S
DO 50 L=N,J
DO 45 K=I,N
D(K)-D(K+1 )-W*C(K) )*Tl./FLOAT(L)

50 WtuD( 1

DO 60 1-1,NN,NDIM
I L -I +1'4' 1
DO 55 JuI,IL

55 EA(J)-E(1)*A(J)
EA( Il)-EA(lI)+E(2)

60 1I=II+NDIMl
IF+(N .EQ. 2) GO TO 95
DO 8O L-3 , r
CALL MMUL(EA,A,N,N,4,X)
II-1
C2-E(L)
DO 75 I-1,NN,NDIM
IL-I+NMI1
DO 70 J-t,IL

70 EA(J)-X(J)
EA(1I)-EA(11)-C2

75 1-tI+NDVIl
80 CONTINUE

85 IF(IND .EQ. 0) RETURN
DO 100 L-1,IND
DO 90 T-1.,NN,NDIM

DO 90 Jul IL
90 X(J)-EA(J)

100 CALL 'IMUL(X,X,N,N,N,EA)
RET!TRN
END
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SURROUTI INTEC(N,A,C,S ,T)
C S-INTEGRAL EA*C*EA' FROM 0 TO T
C C IS DESTROYED

DIMENSION A(l),C(l) ,S(l) ,COFF(15)

NDIM 1-NDIM+1
NN=N*NDIH

NT-.3
NT4 1-NT-i

* TND=O
ANORrI=XNORfl(N, A)
DT -T

5 IF(ANORM*AIIS(DT) .L9. 0.5) GO TO 10
OT-DTI 2.
IND-IND+i
GO TO 5

10 DO 15 1-1,N N, ND IM
J-I+NM1
DO 15 JJ-I,J

15 S(JJ)-DT*C(JJ)
Tl=DT**2/2.
DO 25 IT-3,i7
CALL MMUL(A,C ,N,N,NX)
DO 20 T-1, N

DO 20 JJ-I,NN,NDIM
Il-I 1+1
C(JJ)-(X(JJ)+X(II) )*TI

Z0 S(JJ)-S(JJ)+c(JJ)
25 T1-DT/FLOAT(IT)

MFIND .EQ. 0) GO TO 100
COEF(NT)"1 .0
D0 30 IinlNTMl
I1-NT-1

JO COEF(It)-DT*COEF(1I~I+)/FLOAT(I),
4 DO 4. 1-1,NN,NDI4,

J-I+Nm I
DO 35 JJ-I,J

35 X(JJ)-A(JJ)*COEF(l)



X(Il)-X(I I)+COEF(2)
40 11-1I+NDltl

DO 55 L-3,NT
CALL M'IUL(A,X,N,N, N,C)
II-
Tl-COEF(L)
DO 55 I-1, NN ,N'VLM
J 1+NN 1
DO 50 JJ-I,J

50 X(JJ)-C(JJ)
X(It)-X(1I)+Tl

55 II-II+NDIML
C X-EXP(A*DT)

L-O
60 L-L+l

CALL MM4UL(X,S ,N,N,N, C)
11-1
DO 90 I-1,N
J-11
IF(I .EQ. 1) G0 TO 75
DO 70 JJ-I,II,NDItf
S(JJ)-S(J)

70 3-3+1

75 DO 85 JJ-1 ,N
KK-JJ
DO 80 K-1,NN,NDIM
S (3 ) S (3)+C( K)*X(KK)

80 VK-KK+NDlw
85 Y-J+NDIM

00 8 7 JJ-1,NN,NDIM-
87 C(JJ)-X(JJ)
90 II-II+NDIM

IF(L .EQ. IND) GO TO 100
CALL MtILL(C,C ,N.N,NX)
GO TO 60

100 CONTINUE
.4 RETURN

END
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SUB~ROUTINE MMUL(X,Y,NI,N2,N3,Z)

DIMENSION X(1) ,Y( 1), Z( )
COMMON/M AT N I /NnTM
NEND3-NDIMi*N3
NEND2-NDIM*N2
D0 1 I1N
DO 1 i-I',NFND3 ,NDTM
TM- 0.
K=I
KK-J-1

5 KK-KK+1
TM-TM+X (K) *Y (KK)
K-uK+NDIM
IF(K .LE. NEND2) 00 TO 5

1 Z(J) '-TM
RETURN
EN D

FUNCTION XNORM(N, A)
C COMPUTES AN APPROXIMATION TO NORM OF A. NOT A ROUND.

DIMENSION A(l)
COMM~ONMAIN1 /NDIM

N -N*NDIM
Cd1 0.
TR-A(1)
IF(N .EQ. 1) GO TO 20
1-2
DO 10 II-NDIM1,NN,NDIM

DO 5 JJ-1,1I,NDIM
C1-C1+ABS(A(J)*A(JJ))

5 J-J+l
TR-TR+A(J)

10 I-1+1
TR-TR/FLOAT(N)
DO 15 11-1,NN,'IDIl

20 XNIORlI=ARS(TR)+SQRT(r1)
RiETUR N
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SUBROUTINE MAT4(NI,N2,XYZ)
C Z-YX'U. X=X" IS N2XN2, Y IS NIXN2, Z IS N1XNt

DIMFNSION X(l),Y(1) ,Z(1)
COMMON /NAl NL1 IN DIM
CALL '4UL(Y,X,N1 ,r2,t,2,Z)

*NN2 -N2 *tNDII%
DO 3 I=1,NI

II I IM 1 * N DIM
JJ=I+I I
DO 2 J-I,Nl
TEMP- 0.
KK-J
DO 1 K=I,NN2,NDTM
TEMP-TF.MP+Y(K)*Z(K ,K)

I KK-KK+-NDIM
Z(JJ)-TEMP

2 JJ-JJ+NDIM
JJ=I
K-I 1+1

DO 3 J-K,KK
Z(J )=Z (3)
JJ=.iJ+NDII

3 CONTINUE
RETURN
END



APPENDIX B
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* *DECK FTPSOSP3

SUBROUTINE TPSOOSP2(DT)
C FUNCTION- COMPUTFS THE MiATRIX RICCATI EQUATION
C PC=(EXP(A*T*PC*EXP(A'*T)) +
C + EXP(A*T)*INTErRAL(PfHI DT)*FXP(A'*T)
C W11FE PHi- FXP(A*T)*0OUE*-XP(-A'*T)

*C AND A' -TRANSPOSE OF !MATRIX A
C INPUT VALUES:
C A: SYSTEM SOLUTION MIATRIX.
C QUF: 'lODEL ERROR 4ATRIX.
C PC: VALUE OF COVARIANCE PROPAGATED OVER TIME.

* C DT: TIE lICREMENT IN UNITS OF SCNS
C NPTSS: GLOBAL LEADING DIMF.NSION1 OF ALL ARRAYS.
C NPTPC: THlE ORDER OF SUBMATRICES 91EING MANIPULATED.
C 0D,QDT,PlII: STORAGE ARRAYS. WILT, BE DESTROYED.
C OUTPUT VALUES:
r PC: VALUE OF A PR IORI COVARIlANCE AFTER PROPAGATYXN.
C NPTPC,NPTSS ,rDT , ')UE: INPUT VALUES AIE UNCVAN.GED.
C A,QD,()DT,PiII: INPUT VALUES ARE I)ESTROYED.

DIMENSIONPII,),(,8, (,),QTS)
DIMENSION QU(9,),A(8,3)
(rIONlfC/'IAINI/NP4TPC,N;PTSS, PIll,PC,QID,QDT,QUE,A
lF(DT .LE. 0.) GO TO 999
T-DT/ 3600

C T1I1E T IS NYM I": HOUR UNITS.
CALL IN.TE(1IPTPC,A,T,QUE,P-,!I,QD,QDT,NIPTSS)

WC NOW QUT - INTEGRAL(PifI DT)
C A - EXP(-A*T)

CALL SGEFA(A(l,I),NPTSS,NPTPC,IPV'T(1))
CALL SGEDI(A(I,l),NPTSS,NPTPC,IPVT(l),WORK(l))

*C N(4 A - XP(A*T) AFTER 'IATRIX INVERSION.
CALL 'lAT4JTPC,PTPC,QDT(,l),A(1 ,1),QD(1 ,I))

C INOW QD - XP (A*T) *I .JECR AL (Pill DT) *'-XP (A'*T)
CALL NAT4(Nr'TPC, 'PTrc, Pc(I, ),A(l 11),yT(I,)I

C NOWI QDT = XP(A*T)*PC*EXP(A'*T)
DO 20 1=1,N:PTPC
DO 20 J=i,N1PTI'C

ZO PC(I,J)= QDT(I,J)+ OD)(I,J)
C t'04 PC HOLDS THE SUJM OF I T iI TE 'SMS 1.N
C THlE RICCATI EQUATION.

9919 RETURN
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*DECK MEXP2

SUBROUTINE MEXP(N, SUB1,TIME,SUB2,Q,QT,N2)
C FUNCTION- COMPUTES MATRIX EXPONENTIAL EXP(SUB1*TIME)
C BY SCIUR METHOD OF TRIANGULAR DECOMPOSITION.

SC INPI'T VALUES:
C SURI: MATRIX TO BE EXPONENTIATED.
C TIME: TIME INCREMENT IN AR' ITRARY UNITS.
C SUB2: STORAGE ARRAY. CONTE:MTS WILL HE DESTROYED.
C Q,QT: STORAGE ARRAYS.CONTENTS WILL BE DESTROYED.

" C N2: THE GLOBAL LEADING DIMENSION OF ALL ARRAYS.
C N: THE ORDER OF SUBMATRICES TO RE MANIPULATED.

C OUTPUT VALUES:
C SU92: HOLDSTHE MAIN RESULT EXP(SURI*TIME).
C SU9I,Q,QT: INPUT CONTENTS HAVE BEEN DESTROYED.
C TIME,N,N2: INPUT VALUES ARE UNCHANGED.

DIMENSION SLJBI(N2,N2),SUB2(N2,N2)
DIMENSION Q(N2,N2),QT(N2,N2)

C MULTIPLY ELEMENTS OF SURI BY TIME
DO 102 I=1,N
DO 102 J=1,N
SUB 1(I,J)=SUR 1(I,J)*TIfE

102 SUB2(I,J)=SUBI(I,J)
C GENERATE IDENTITY MATRIX FOR INPUT Q, FOR HOR

DO 30 =1,N
DO 30 J=1,NW O(I,J)-O.

30 IF(I .EQ. J) 9(I,J)-i.
CALL I!' (N,SUB2,Q,N2)

C MATRI.. SlB2 HIAS BEEN DESTOYED
C 9 IS NOW AN ORTHOGONAL TRANSFORMATION MATRIX

DO 40 I-1,N
DO 40 J-l,N

40 QT(I,J)=0(J,I)
C QT IS NOW THE TRANSPOSE,AND THE INVERSE, OF Q

CALL MULT(SUB1,Q,tN, SUB2,N2)
CALL 4ULT(QT,SUq2,NSUBIN2)

C SUBI NOW CONTAINS THE TRIANGULAR MATRIX QT*A*Q
C Wl(ERF 'A' REPRESENTS THE INPUT VALUE OF SUBI.

DO 50 I=1,N
DO 50 J=l,N

50 SUR2(I,J)=O.
C SHR2 IS SET TO A ZERO MIATRIX FOR INPUT TO MODULE FUNCT.

CALL FUNCT(t,N,SURl,SHB2,N2)
C SW12 NOW HOLDS EXP(A*T[EM) INl TRIANGULAR FORM

CALL %HlLT(SUR2,OT,NSURl ,N2)
CALL 'IULT(Q,SUB1,N,SUB2,N2)

C SU32 NOW HOLDS EXP(A*TIME) IN ORIGINAL BASIS FORM

RETURN
END
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*DECK INTEG2

SUBROUTINE. lPITEG(N4,A,T,QUIE, PIII,OD,QIDT, N2)
C FUNCTION- USES SIMPSON'S, RULE ON THlE RICCATI INTF MAL.
C - UJSES THE 11ATRIX VULE EXP(A(S+T))=EXP(AS)*F.XP(AT).
C SOURCE: A.H.LF.VIS, CCO1PTTATIOrAL ASPTECTS OF TITF 'IATrTX
C FXPOVNENTIAL, IEEE TRANSACTIONS ON AIJTM~ATIC CONTROL,
C AUG 1969:410,411.
C INPUT VALUES:
C A: SYSTEM '1ATRIX TO BE EXPONENTIATED.
C T: TIMlE INCREMENT IN ARBITRARY UNITS.
C QUE: SYSTEMI TIOPEL ERROR MIATRIX.
C PIII,QD,QDT: STORAGE ARRAYS. W4ILL HE DESTTROYED.
C N2: GLOBAL LEADING DI'MENSION OF ALL ARRAYS.

C N: DIMENSIO OF SLRMATRICFS TO PE '-ANIPULATED).
C OUTPUT VIALUES:
C N,,2: INPUT VALUES ARE UNCHANGED.

* C A ,PiII,QD: INPUT CONTENTS ARE DESTROYED.
C QDT: HOLDS THE 'tAIN RE.SULT,
C INTFGRAL(EXP(-A*T)*QUET*rXP(-A '*T)DT)

DIMENSION A(t,2,N2),OUE(N12,N.2),PIIT(N2,N!2)
DIMENSION QD)(,N2,N2),QDT(N2,N,2)
T2- -T*0.5
CALL HtEXP(N,.A(1 ,l),T2,PI1(1,1),QD(l,1),ODT(l,l) ,N2)

C N'Y4 Pill EXP(-A*T/2)
CALL TINQ'(,)PI1,)Q~,)QTl1,2

C N(14 QDT -EXP(-A*T/2)*QL'E*FXP(-A'*T/2)
CALL MISCALE(N;,N,ODT(1,l),4.O,QDT(1, I))

C N(TXJ QDT - 4*EXP(-A*T/2)*Qoly*EXP(-A9 *T/2)
CALL MILT(PIl (1, 1), Pill(1, 1), N, A(1, 1),!42)

C W A - EXP(-A*T)
CALL TRI(NQUE(l,l),A(l,l),QD(l,1) ,PIit(l,l),N2)

C NOW 1711 - EXP(-A*T)*QUE*EXP(-A'*T)
DO 1.0 t=1,NJ
DO 10 J=19f.:

10 QDT(I,J)- QtUE(I,J)+ QDTCI,J)+ Plil(I,J)
C QDT SlIMIED THlE THlREE TERMS OF SIPS'nN'S RULE.

T6-T 16.0
CALL TISCALE(N,,09OT(l,l),T6,QD)T(l ,1))

C N114 QDT QD)T*T/6. SIMPSON'S RULE IS COMPLETE.
R ETUR N
E ND
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*DECK MULT2

SUBROUTINE MULT2(N,X,Y,Z,N2)

C FUNCTION- PERFORMS MATRIX MULTIPLICATION Z=X*Y',

C H1ERE Y' REPRESENTS THE TRANSPOSE OF MATRIX Y.
C INPUT VALUES:

C X,Y: ARRAYS THAT llnLD MATRICES TO BE MULTIPLIED.

C Z: STORAGE ARRAY. CONTENTS WILL BE DESTROYED.

C- N2: THE GLOBAL LEADINC DIMENSION OF ARRAYS X,Y,Z

C N: THE ORDER OF THE SUBMATRICES TO BE MULTIPLIED.
DIMENSION X(N2,N2),Y(N2,N2),Z(N2,N2)
DO 20 I-1,N
DO 20 J-1,N

"* Z(I,J)= 0.
DO 20 K=IN

20 Z(I,J)= Z(I,J)+X(I,K)*Y(J,K)
RE TUR 3
END

*DECK TRI

SUBROUTINE TR I(N,Q,X,W,Z,N2)
C FUNCTION- PERFORMS TIIE MATRIX MULTIPLICATION Z=X*Q*X',

C WHERE X' REPRESENTS THE TRANSPOSE OF MATRIX X.
C INPUT VALUES:

C X,Q: ARRAYS THIAT HOLD MATRICES TO BE MULTIPLIED.

, C W,Z: STORAGE ARRAYS. CONTENTS WILL BE DESTROYED.

C N2: THE GLOBAL LEADING DIMENSION OF ARRAYS O,X,W,Z.

C N: THE DIMENSION OF SURMATRICES TO BE MULTIPLIED.
C" OUTPUT VALUES:

" C X,Q,N2,N: INPUT VALUES ARE UINCIIANGED.
* C Z: IOLDS TIHE AlAIN RESULT X*O*X'

C W: INPUT VALUES ARE DESTROYED.
DIMENSION Q(N2,N2) ,X(N2,N2) ,W(N2,N2),Z(N2,N2)
CALL MULT%X,Q,N,W,fl2)

C X*Q IS STORED IN W'
CALL MlULT2(N,WX,Z,N2)

C Z =W *X"
R ETUR N
END

!,
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"DECK MULT

SUBROUTINE MULT(X,Y,N, Z,N2)
* C FUNCTION- PERFORMS MATRIX .IULTIPLICATION Z=X*Y

C INPUT VALUES:
C X,Y: ARRAYS THAT HOLD MATRICES TO BE MULTIPLIED
C Z: STORAGE ARRAY. CONTENTS WILL BE DESTROYED.
C N2: GLOBAL LEADING DIMENSION OF ARRAYS X,Y,Z.
C N: THE ORDER OF THE SUBMATRICES TO BE MULTIPLIED.
C OUTPUT VALUES:
C Z: HOLDS TIIE MATRIX PRODUCT X*Y.

*C X,Y,N,N2: INPUT VALUES ARE UNCHANGED.
DIMENSION X(N2,N2) ,Y(N2,N2),Z(N2,N2)

DO 20 I=1,N
DO 20 J=1,N
Z(I,J)=O.
DO 20 K=,1N

20 Z(I,J)-Z(I,J)+X(I,K)*Y(K,J)
RETURN

END

1
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*DECK FUNCT

SUBROUTINE FUCT(R,S,T,F,UI)
C FUNCTION-TIllS MODULE COMPUTES TIE EXPONENrr OF AN
C UPPER TRIANGULAR MATRIX WITH DISTINCT EIGENVALUES.
C THE EXPONENTIAL OF TIlE DIACONAL ELEMENTS IS COMIPUTED
C DIRECTLY.SUPERDIAGOUAL ELEMENTS ARE OBTAINED FROM TIIE
C LO',rER DIAGONALS BY A RECURRENCE PFLATION.
" '' C A .ARtIG IS PRINTED IF MULTIPLE EIGENVALUES EXIST.
C SOURCE: CO.NPUTATION OF FUNCTION*S OF TRIANGULAR MATRICES
C BY B.'T. PARLETT, ME10 #ERL-M481, UNIVERSITY OF CALIF.
C AT BERKELEY. NOV 1974. (AD-A 005 916)
C INPUT VALUES:
C R: TIHE INDEX OF THE FIRST ROW IN TIlE TRIANGULAR BLOCK.
C S: THE INDEX OF TIlE LAST R(M4 IN THE TRIANGULAR BLOCK.
C T: THE ARRAY 'ahllCRl CONTAINS THE TRIANGULAR MATRIX.
C F: THIS ARRAY CONTAINS A ZERO MATRIX.
C M M: TItEE GLOBAL LEADING DIMENSION OF ARRAYS T AND F.
C OUTPUT VALUES:

C R,S,T,MM: INPUT VALUES ARE UNCHA NCD.
C F: CONTAINS THE RESULT, TIHE EXPO;rNTIAL OF XATRIX T.

nlIrNSION (.' , ), (,tJ'M

INTEGER R,S
REAL EXP

DO 10 I=R,S
C TIIE IF-BLOCK CIVES 14-DIGIT ACCURACY ',,ITIOUT UNDERFL.'

IF( T(I,I) .LT. -43.) THEN

F(I, I)=0.
ELSE

:... F(I,I)=EXP( T(I,I) )
END IF

10 CONT I NUE
C PROCESS TilE KTi SUPERDIAGO'AL

*N=S-R+1
'4N=N-1

C NN -IU'IBER OF S!;PERDIArO!.ALS IN TilE BLOCK
IF(NN .EQ. 0) RETURN
DO 13 K=I,NN
LL=S-K

O 12 I=R,LL
C CIECK FOR .fULTIPLE FIErVALUES.

DIFF=T(I, [)-T(I+K, I+K)
IF(,BS(DIFF) .EQ. 0.0) GO TO I',
G=T(I, [+K)*(F(fI, )-F(T+KI+K))

KK=K-I
IF(,K ..Q. 0) GO TO 12

DO II '!=l,KK
i1 G=G (F(I, I+N)*T (I+M, I+K)-T( I, [+r, -I)*F( [ +K'I+K) )

L2 F(I,I+K)=,/DIFF
13 CONTIitE

R ETt.MN
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14 PRINT *,ERROR IN '-10'.UtE FUNCT.'
PRINT * 'TRIANGULAR 'IATRIX IIAS 'IULTIPLE EICr,,:VALrwF..
RETURN
END

**DFCK IIQR
SUBROUTINE IQR(ICI,II,Z,N2)

C FUNTION-CALCULATES THlE ORTHIOGONAL SCOIUR TRANSFOi.MATION
C MIATRIX FOR TI!9 UPPER IIESSENRERG 'fATRIX W.HICIT IS INPUT.

C USES TUEr QR ITERATIVE MTllOD.
C PR INTS A WARNING IF THlE ELGENVALUFS DO NOT CONVERGE.
C SOURCE: THlE EISPACK GUIDE.
C INPUT VALUES:
C IGH: DIMENSION OF THE REQUIRED TPANSFORMATION MATRIX.
C H: THlE UPPER IIESSENHF~G MATRIX TO BE TRANSFORMED.

C Z: MUST BE AN IDFNIT 'ATRIX.
C N2: THlE GLORAL LEAD)ING DIENSION OF ARRAYS I1 AND Z.

*C OUTPUT VALUR.S:
*C IGIU, Q: INPUTr VALUES ARE UNCHANGED.
*C It: INPUT VALUES ARE DESTROYT'T.
*C Z: C ONTAINS THlE ORTHOGONAL SCHUR TPANSFORMI MATRIX.

INTEGER 1, J, K, L,M,N,EN, II,JJ, LL,M,[INA,NN,NN, N2,
X IGH, ITS, L(XJ.,'P2,ENM 2,IFRP,MINO-1

REAL If(?2,N2),7(N2,r.2)
* REAL P,Q,R,S,T,W,X,Y,RA,SA,VI,VRZZ,UIORMI
*REAL M ACIIEP, SQRT, ABS, SIGN, REAL, AT'IAG

LOGICAL NOTLAS

I . 64 COMPLEX Z3,C.MPLX

C
C

*C 4ACIIEP IS A PARAMEFTER THAT SPECIFIES PRECISION
'MACIIP-.00000000000I

N1-I GIl
LCWI -I
[ERR=
NORM- 0.
K- I

CCOMPUTE 'IATPIX . ORM
Do 50 1 ='

DO 40 3 - I
40 NO!I N OPII + AIS(11(I,J))

6( IN ILT GI J GOTI1
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ITS = 0

! .NA EN-I
EM12 = NA - 1

C **OO FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
.: C FOR L=EN STEP -1 UNTIL LOW DO *

70 DO SO LL = LOW, EN

L = EN + LMW - LL

IF(L .EQ. LOW) GO TO 100
S = ABS(II(L-I,L-1)) + ARS(II(L,L))

IF(S .EQ. 0.0) S - NORM1
IF(ABS(II(L,L-1)) .LE. MACRIEP * S) GO TO 100

80 CONTINUE
C FORM SHIFT ***

100 X - 1!(EN,EN)
IF(L .EQ. EN) GO TO 270
Y 1 H(NA,NA)
W = H(EH,NA) * 1!(rlA,EN)
IF(L .EQ. NA) GO TO 2,0
IF(ITS .EQ. 30) GO TO 1000

IF(ITS .NE. 10 .AND. ITS .NF. 20) GO TO 130

C *** FORM EXCEPTIONAL SHIFT *
T - T +X
DO 120 1 - LO-.4,EN

120 !1(1,1) = 11(I,I) - X
S ABS(lI(EN,NA)) + ABS(!I(NA,EN!M2))

X -0.75 * S[~~ XO7

W -0.4375 * S * S

130 ITS - ITS + I

C LOOK FOR TWO CO:;SECUTIVE SMALL SPB-DIACONAL ELEMENTS
C *** FOR M-EN-2 STEP -1 UNTIL L DO ***

DO 140 M,11 = L, F'442
?t = ENT2 + L -NM
ZZ ll(M,:)
R = X -ZZ

S Y - ZZ

P (R * S -) I H('!+1 ,I) + H(:!,,+1)
Q H('1+1,,+1) - ZZ - R - S

R II(M+2,M'+1)
S ABS(P) + ABS(Q) + ABS(R)

p P/S
Q Q/SR RIS

"F(! .EQ. L) GO TO 150
IF(.AXBS(II(l ,;I-l))*(A S(e)) + A,;(R) ) .IE. :h\CIEP*ABS(P)

B-10



X *(ABS(HM :f--l))+AS (Z) +A~SS(11(M+1,I-))
X GO TO 150

140 CONTINUE
150 11P2 - 3 + 2

DO 160 1 - MP2, E.
1(1,1-2-) - 0.0
IF(I .EQ. HP2) GO TO 160

11(11-3) 0.0
160 CONTINUE

C *DOUBLE QR STEP FOR R"45 L TO EN ANTD COLUMNS M TO EN*

DO 260 K - M, NA
NOTLAS - K .NE. NA
IF (K .EQ. 11) GO TO 170
P 1(K,K-1)
Q lH(K+1.,K-1.)
R 0.0
IF (NOTLAS) R - l(K+2,K-l)
X -ARS(P) + A3S(Q) + AT3S(R)
IF(X EQ.. 0.-0) G0 To 260
p -P/X
Q - Q/X
R - RX

170 S =SIGN(SQRT(P*P+9*Q+R*R),P)
IF(K.EQ. H1) GO TO 180
1(K,K-1) -S* X
GO TO 190

1S0 IF(L NHE. M) 1l(K,K-1) =-'H(K,K-1)

190 P P+ S
x - P/s
y -QS
ZZ -R/S

Q -Q/P
R -R/P

C **RC14 MODIFICATION**
DO 210 J =K, N

P - ll(K,J) -Hq * l(K+1,J)
lF(.NOT. NOTLAS) GO TO 200
P - P + R * 1I(K+2,J)
l(K+2,J) - I(K+2,J) - P *Z%.

200 H,(K+1,J) - T(K+l,J) - P *Y

II(K,J) - TI(K,J) -P *X

zdo CONTI.NUE
MIN0(FrN,K43)

C COLUMN !ODIFICATI0N
Do 210 1 1, J *

P -X *11(1,K) + Y i(,.I
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IF( .NOT. NOTLAS) GO TO 220
P = P + ZZ * 1(I,K+2)
11(I,K+2) = 1(I,K+2) - P , R

120 l(I,K+I) = 1(I,,X-l) - P * Q
.l(I,K) = H(1,K) - P

" 230 CONTINU
C * ACCU'ULATE TRANSFORMATIONS *

DO 250 1 LOW, IGIl
P - X * Z(I,K) + Y * Z(I,K+I)

IF( .NOT. NOTLAS) GO TO 240
P - P + ZZ * Z(IK+2)
Z(I,K+2) = Z(I,K+2) - P * R

240 Z(I,K+I) - Z(I,K+I) - P * Q
Z(I,K) = Z(I,K) - P

250 CONTINUE
260 CONTINUE

CO TO 70
C *** ONE ROOT FOUND ***

270 H(EN,EN) - X + T
EN - NA

GO TO 60
C *** TWO ROOTS FOUND ***

280 P - (Y - X)I 2.0
9 = P*P + W
ZZ - SQRT(ABS(Q))
iI(1N,tN) - X + T
X - H(EN,EN)
ll(NA,NA) - Y + T
IF(Q .LT. 0.0) GO TO 320

C *** REAL PAIR ***
ZZ- P + SIGN(ZZ,P)

% II(EN,NA)

S ARS(X) + ABS(ZZ)
P x/s
9 zz s
R SQRT(P*P + Q*Q)

Q-O /R
C ROW MODIFICATION *

DO 290 J - NA, N
ZZ - H(NAJ)
II(NA,J) - Q*Z7 + P*(FN,J)
MI(F 1,J) - 9*11(F.N,J) - P*7Z

290 CONTINUE
* C *** COLUMN MODIFTCATION ***
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i : ...DO,300 - - .,-EN

C *** COLU!-fN MODIFICATION

DO0300 1 -1, EN
ZZ = ll(I,N'A)
H(I,NA) = Q*ZZ + P*II(I,FN)
I(I,EN) = Q*H(I,EN) - P*ZZ

300 CONTIt;UE
C *** ACCUMULATE TRANSFOR:.tATIONS *

DO 310 1 = LCV, IM
ZZ = Z(I,NA)
Z(I,NA) - Q*ZZ + P*Z(I,EN)
Z(EEN) = Q*Z(IEN) - P*ZZ

310 CONTIUE
GO TO 330

C *** COlPLEX PAIR *

320 CONTINUE
330 EN = ENM2

GO TO 60
C ERROR - NO CONVERGENCE TO EIGENVALUE AFTER 30 ITERATIONS
1000 IERR = EN

PRINT *,'EIGENVALUE',IERR,'DOES NOT CONVERGE.'
SO R PRINT *,'SUGGEST INCREASING MACIV P IN MODULE IIQR'

1001 R ETURN
END

B
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* .. , ' i i : :.. . ,

*DECK SCEFA
• " SUBROUTINE SGEFA(A,LDA,4, IPVT)

INTEGER LDA,N,IPVT(t),INFO
REAL A(LDA,I)

C
C SGEFA FACTORS A REAL MATRIX BY GAUSSIAN ELIMINATION.
C A WARNING IS PRINTED IF A ZERO EICENVALUE IS FOUND.
C
C ON ENTR Y:
C A: THE MATRIX TO BE FACTORED

C LDA: THE GLOBAL LEADING DIMENSION OF THE ARRAY A
C N: THE ORDER OF THE ?IATRIX TO BE FACTORED.
C IPVT:STORAGE ARRAY. INPUT CONTENTS WILL BE DESTROYED.
C.
C ON RETURN
C A: AN UPPER TRIANGULAR MIATRIX AND THE MULTIPLIERS

* C WHICH WERE USED TO OBTAIN IT.
C IPVT: AN INTEGER VECTOR OF PIVOT INDICES
C TillS IS FROM LINPACK USER'S GUIDE,VERSION 0B/14/78

REAL T
INTEGER ISAMAX,J,K,KPI,L,?Itl

C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

INFO= 0
'MI= N-I

IF(NMl .LT. 1) GO TO 70
DO 60 K=1,NM1l
KPI= K+I

C
" C FIND L - PIVOT INDEX:'i L S.I A.( N-K+., A(K, K), I)+K-1

IPVT(K)= L
'" C

C ZERO PIVOT IMPLIES THIS COLLMN IS TRIANGULARIZED
IF(A(L,K) .EQ. O.OEO) GO TO 40

r" C
. C INTERCllAtGE IF *NECESSARY

IF(L .EQ. K) GO TO 10
T-A(I., K)
A(L,K)- A(K,K)

A(K,K),, T
10 CONTIM:E

C
C COMPUTE M!U'LTIrLIERS

T= -I.OEO/A(K,K)
CALL SSCAL(N-K,T,A(K+IK),I)
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CROW ELIMINATION WITH COL~1t1N WnF.XING
Do 30 J=KP , N

T- A(L,J)
IF(L .EQ. K) GO TO 20
A(L,,J)- A(K,J)
A(K,J)- T

20 CONTINUE
CALL SAXPY(N-K,T,A(K+1,K(),1,A(K+l ,J),l)

30 CONTINUE
GO TO 50

40 CONTINUE
TINFO= K

50 CONTINUE
60 CONTtIUE
70 CONTINUE

IPVT(N)= N
IF(A(N,N,') .EQ. 0.OEo) INFO= N
tF(INFO .NE. 0) TH~EN

rR TNT *, 'EIGE.NVALJE ',I!4FO, '=O IN ffOT)hLSGEFFA.
PRINT *, 'THIS CAUSES MODULE SCEDI TO T)IVIDIE BRY 0.

END IF
RETUR N

N D)
*nECK 5 cEFD)I

SUBROUTINE SGEDI(A,LDA,N, IPVT ,UORK)
INTEGER LY)A,N,IPVT(l)
REAL A(LDA, I),WORK( 1)

C
C SCEDI COMPUTES INVERSE OF MATRIX A USING
C FACTORS COMPUTED BY SGEFA.
c
C ON ENTRY:

* C A: THlE OUTPUT FROM SCFFA, REAL(LDA,N)
C LnA: THlE LEADING DIMENSION OF ARRAY A
C N: THE! ORnER OF MIATRIX A
r IPVT: VI(E PIVOT VECTnR FROMl SGEFA,INTFGFR(N.)
C W4ORK: WORK VFCTOR,CONTRNTS DESTROYET),RFAL(N)
C

*C ON RETURN:
*C A: INVERSE OF THE ORIGINAL MATRIX
* r

r ERROR COznITION: A DIVISION B~Y ZE-RO W4ILL, OCCU'R IF -11F
C INriUT FACTOR CONTAINS A %r',RO ON TimE DIAGONAT..
C IT WITLL NOT OCrCUR IF SCEFFA HAS SET pirO=O
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C TIIS IS FROM' L INP ACK US ER 'S G ITI DE VF.R SION 08/14/7 8
REAL T
INTEGER I,J,K,KR,VPL,L,NM1

I-> C

C C'mPUTE INVERSE
DO In0n K-1l,,N

AKK)- 1. OEO/A(K, K)
T- -A(K,K)
CALL SSCAL(K-l,T,A(1 ,K),1)
KPI= K-IA
IF(N .LT. KPI) GO TO 90
no 80 J-KPl,N
T- A(K,J)
A(K,J)- 0.OEO
CALL SAXPY(K,T,A(1 ,K),1,A(1,J),l)

80 CONTINUE
9O CONTINUE

100 CONTINUE

c FORM INVERSECU)*I'N'VERSE(L)

IF(NI .LT. 1) GO TO 1.40
DO 130 KB=1,NMl
K- N-KB
KPl= K+1
DO 110 I=KPI,N
WORK(I)= A(I,K)

A(I,K)- O.OEO
110 CONTINUE

DO 120 J-KPl,N
T- wORK(J)
CALL SAXPY(N, T, A(1, J) ,1,A( 1, K), 1)

120 C ONTI NU E
Lu IPVT(K)
IF(L .NE. K) CALL Sql4AP(N,A(1,K),l,A(1,L),l)

130 CONTINUF
140 CONTIP11E

R RETUR N

*nECK ISA'IAX
INTEGER FUNCTION ISA!IAX(N,SX,INCY)

I. fSAMAX FTNDS INI)EX OF FLEMEti IhMY.ASLT VALUE.
C LPIPACK U1SER 'S GUIDE, VERSION 03/11/78

d REAL SX(l),SMAX
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INTEGER I,INCXIXN
ISAMAX- 0

IF(N .LT. I) RETURN

ISAItAX- I

IF(N EQ. 1) RETURN
IF(IHCX .EQ. 1) GO TO 20

C
C C'iDE FOR INCREMENT NOT EOUAL TO 1

IX- I
SMAX- ASS(SX(1))

IX" IX+INCX
DO 10 I-2,N

IF(ABS(SX(IX)).LE.SMAX) GO TO 5

ISA' AX- I
S'AX- ABS(SX(IX))

5 IX- IX+INCX
10 CONTINUE

RETURN
C

C CODE FOR INCREMENT EQUAL TO I
20 SIAX- ARS(SX(1))

DO 30 I-2,N

IF(ABS(SX(1)).LE.SMAX) CO TO 30

ISAMAX- I
SMAX- ABS(SX(I))

30 CONTINUE

RETURN
END

*DECK SAXPY

SUBROUTINE SAXPY(N,SA,SX,INCX,SY, INCY)
C CONSTANT TIMES A VECTOR PLUS A VECTOR.

C USES UNROLLED LOOP FOR INCREMENTS- 1.

C FROM LINPACK USER'S GUIDE,VERSION 03/11/78

REAL SX(l),SY(l),SA

INTEGER I,INCX, INCY,IX,IY,I,MPl,Hr
TF(N .LE. 0) RETURN
IF(SA .EQ. 0.0) RETURN
IF(INCX .EO. 1 .AND. INCY ,O. 1) GO TO 20

C
" C CODE FOR UNEQUAL INCREMENTS OR FOR

eC EQUAL INCREtENTS NOT EQUAL Tn 1
Iy- I

7IF(INCX.LT.O) IX= (-N+I)*INCX +1

IF(INCY.LT.O) IY- (-N+1)*INCY +1
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DO 10 I-1,N
SY(IY)- SY(IY)+ SA*SX(IX)
IX- IX+INCX
IY- IY+INCY.

10 CONTINUE
RETURN

C
C CODE FOR ROTH INCREMENTS EQUAL TO I
C CLEAN-UP LOOP

*20 M-%IOD(N,4)
IF(M EQ. 0) GO TO 40
DO 30 1-1,M

*SY(I)- SY(I)+ SA*SX(I)
30 CONTINUE

IF(N .LT. 4) RETURN
40 MPL- M+1

DO 50 I-MPl,N,4
SY(I)= SY(I)4- SA*SX(I)
SY(I+1)= SY(I+1)+ SA*SX(t+.)
SY(I-92)- SY(I+2)+ SA*SX(I+2)
SY(I1+3)= SY(I+3)+ SA*SX(I+3)

50 CONTINUE
RETUR N
Ern)

*DE~CK SSCAL
SUnROUTINE SSCAL(N ,SA, SX.,I NX)

C SCALES A VECTOR BY A CONSTANT.
C USES UNROLLED LOOPS FOR INCREM~ENT EQUAL TO 1.
C LINPACK USER'S CUIDE,VFRSION 03/11/79
C

REAL SA,SX(l)
INTEGER I, INCX,!I,!IPI,N,NIICX
IF(N .LE. n) RFTURN

* . IF(INCX .EQ. 1) GO TO 20
C

* C C01)E FORl INCRFMENT NOT EQUAL TO 1
NINCX- 3I*I'1CX
DO 1.0 t-1,NINCX,IICX
SX(I)- SA*SX(I)

10 C ONTINUF
PET UR N

C
C COD)E FOR INCREMENT EQUAL TO 1

-C CLEAN-UP LOOP
20 ?1- ' Of(N,5)
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tF(?! .EQ. 0) GO TO 40
DO 30 1-1,H
SX(I)- SA*SX(I)

30 CONTINUE
IF(N .LT. 5) RETU'RN

40 ?!Pl M+1
DO 50 I=NMP1 ,N, 5
SX(I)- SA*SX(I)
SX(I+l)- SA*SX(t+1)
SX(I+2)- SA*SX(1+2)
SX(I+3)- SA*SX(-43)
SX(I+4)- SA*SX(I+4)

50 CONT INUE
R ETUR N
ENHo

*DECK S9.TAP
SUBROUTINE SSWAP(N,SX,INCX,SY,INCY)

C INTER.CHANGES 'flJ0 VECTORS..
*C USES UNROLLED LOOPS FOR [NCPJREN TS EQUAL TO 1.
*C UINPACK USER'S GUIDE,VF.RSIOU1 03/11/178

C
REAL SX(l),SY(l),STE-,* P
INTEGER TII'CX,IlCY,IX,IY,M,!lPl,N
IF(N .LE. 0) RETUR N
IF(INCX .EQ. 1 .AND. INCY .EQ. 1) GO TO 20

CCODE FOR UN XUL IMCREMNS O QA
C INCREMENTS NOT EQUAL TO 1.

Ix- I
Iy- 1
IF(INCX .LT. 0) IX- (-NI+)*INCX+I
IF(INCY .LT. 0) IY= (-N+1)*INCY+l
DO 10 I-lN4
hTFMP- SX(IX)
SX(IX)- SY(IY)
SY(IY)- STE-'fP
Ix- IX+INCX
IYU IY'-TNCY

10 C ONTI1NU 1,E
RF.TURI

C
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C CODE FOR ROT!! INCRrMF.HTS EQUAL TO 1.
C CLEAN-UP LOOP

20 !11- 1,10n(N,3)
IF(M .EQ. 0) GO TO 40
DO 30 1-1,M
STEMP- SX(I)
SX(I): SY(I)
SY(I)- STEMP

30 CONTINUE
IF(N .LT. 3) RETURN

40 .IP1- vf+l
DO 50 I-'ePI,N,3
STEMP- SX(t)
SX(I)2s SY(I)
SY(l)- STF! P
STEMP- SX(I+l)
SX(I+1)= SY(I+l)

STF!IP= SX(I+2)
SX(1+2)- SY(I+2)
SY(1+2)- STEMP

50 CONTINUE
RETUR N
rNn'
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